Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология растений.doc
Скачиваний:
9
Добавлен:
27.11.2019
Размер:
161.28 Кб
Скачать

Вопрос 43. Необходимые растению ультрамикроэлементы, их усвояемые соединения и роль.

В растительных организмах содержатся почти все известные химические элементы. Их можно разделить на три группы.

К первой группе относятся кислород, водород, углерод, азот, фосфор, калий, кальций, магний, сера и железо. Они составляют около 98-99% веса организмов.

Ко второй группе относятся элементы, содержащиеся в организмах в тысячных и десятитысячных долях процента: бор, марганец, медь, цинк, иод, бром, мышьяк и т. д. Это-так называемые микроэлементы.

Кроме того, в организме имеются элементы третьей группы, содержание которых измеряется миллионными и миллиардными долями процента, например радий, уран, торий и другие. Они называются ультрамикроэлементами.

Микроэлементы и ультрамикроэлементы, постоянно встречающиеся в живых организмах, вначале ошибочно признавались случайными примесями. По мнению многих ученых, растения вынужденно поглощали их из почвы. Однако экспериментальные физиологические исследования установили, что без микро- и ультрамикро- элементов растения не могут нормально развиваться и даже гибнут. Недостаток этих элементов в питательной смеси вызывает в растениях и животных организмах тяжелые, так называемые эндемические (свойственные данной местности) заболевания.

Среди ультрамикроэлементов, постоянно встречающихся в растительных тканях, особое значение имеют естественные радоактивные и редкоземельные элементы. К ним относятся радий, уран, торий, церий, лантан, самарий, титан и др.

Как показали исследования последних лет, редкоземельные элементы постоянно содержатся в растительных организмах.

Количество редкоземельных и радиоактивных элементов в окружающей среде ничтожно мало, однако благодаря широкому распространению они играют чрезвычайно важную роль в жизни живых организмов нашей планеты.

Растительные организмы обладают способностью концентрировать радиоактивные элементы в десятки и сотни раз большем количестве, чем их обычно содержится в окружающей среде. Так, в семенах винограда содержание урана составляет до-2800 10_6 % от массы золы. Имеются сведения о присутствии в семенах арахиса титана (30-80 мг/100 г), ваннадия (10- 50 мг/100 г), стронция (0,80-5,0 мг/100 г) и некоторых других.

Вопрос 51. Обмен веществ у растений, его специфика.

Обмен веществ в растении обозначает совокупность превращений вещества, обуславливающих жизненную деятельность организма. Следует, прежде всего, различать процессы образования и процессы разрушения. В первых вещество утилизируется как таковое, т.е. в конечном результате служит для образования существенных частей растения — протоплазмы, твердого остова и т. д. В процессах второго рода вещество не утилизируется, как вещество; оно разрушается, причем освобождается скрытый в нем запас энергии, необходимой для поддержания жизненных процессов. Далее следует различать два физиологических типа растений: зеленые (содержащие хлорофилл) и растения, лишенные этого цвета — обширный класс грибов (куда с физиологической точки зрения необходимо отнести и бактерии и небольшое число высших растений, лишенных зеленого цвета). Первые способны созидать органические вещества из простейших неорганических окислов — воды, углекислоты — веществ, не заключающих запаса энергии. Представители второй группы нуждаются в веществах, заключающих готовый запас химической энергии, и в этом смысле сходны с животными.

I. Процессы образования органического вещества.

А) В зеленых растениях. Вся совокупность относящихся сюда процессов обнимает поступление веществ, их усвоение и дальнейшее изменение в восходящем (в смысле усложнения, синтеза) и нисходящем порядке (в смысле разложения, упрощения состава). Процесс поступления веществ извне в растительный организм обуславливается физическими свойствами этих веществ. Пища растений рассматриваемой категории состоит из газов и кристаллоидов — веществ, частицы которых обладают подвижностью (способностью к диффузии), и в силу этой особенности сами проникают в морфологические элементы растения (клеточки). Этим объясняется коренное отличие растений от животных: растение может быть неподвижно, так как его пища подвижна; животное, по необходимости, подвижно, так как его пища неподвижна (состоит из коллоидов).

В) В растениях не зеленых. Главная особенность процесса образования вещества, характеризующая растения этой группы, заключается в том, что процесс этот не исходит из синтеза за счет кислородных неорганических соединений, как в зеленых растениях, а организм получает какое-либо вещество, заключающее готовый запас потенциальной энергии. Этим объясняется независимость этих растений от света — как внешнего источника энергии. Сюда относятся организмы, развивающиеся в благоприятной органической среде (заключающей готовые белки, углеводы, кислоты и другие органические вещества) — каковы грибы с включением бактерий и небольшое число высших, не зеленых растений. Частный случай этого явления представляют микроорганизмы, а равно и некоторые лишенные хлорофилла высшие растения, развивающиеся на других живых организмах (паразиты). Но жизнь организмов не зеленых может сопровождаться и несомненными синтетическими процессами. Так, например, дрожжевой грибок синтезирует белковое вещество своей протоплазмы из доставляемых ему углевода и аммиака; известны бактериальные организмы, синтезирующие свое органическое вещество из аммиака и углекислоты.

II. Процессы разрушения.

А). У зеленых растений. Часть усвоенного этими растениями вещества не потребляется как вещество, а разрушается, окисляется кислородом воздуха, превращаясь в углекислоту и воду. Это процесс дыхания, одинаковый с процессом дыхания животных. В результате этого процесса является, следовательно, трата вещества; утилизируется же освобождающаяся при этом энергия, необходимая для поддержания деятельности организма — его роста, движения и т. д. Часть этой энергии обнаруживается в форме тепла, особенно резко проявляющегося при распускании почек, цветении и прорастании — вообще говоря в органах, богатых белковыми веществами (протоплазмой). Материалом, подвергающимся окислению, служат, по-видимому, углеводы и жиры. Новейшие исследования делают весьма вероятным, что этот окислительный процесс находится в зависимости от присутствия особого растворимого фермента — лакказа или оксидаза.

В) У растений не зеленых. У растений этой категории наблюдается и настоящее дыхание, но, рядом с ним, у простейших грибов, например из дрожжевых, мукоровых и особенно у бактерий, встречаются иные процессы, которые должны быть признаны только равнозначащими дыханию, так как в результате их является трата вещества и освобождение энергии. Типическим представителем таких процессов является спиртовое брожение, заключающееся в распаде глюкозы на спирт и углекислоту. От процесса дыхания он отличается выделением углекислоты без поглощения кислорода. Подобный же процесс встречается и у зеленых растений при ненормальных условиях (в отсутствии кислорода). Так как при этом процессе освобождение углекислоты и тепла происходит в силу перемещения кислорода в самой частице вещества, вследствие чего один из продуктов оказывается более окисленным, а другой менее окисленным, чем первоначальное вещество, то некоторые немецкие физиологи предлагают называть этот процесс дыханием внутри частицы — интрамолекулярным дыханием. Этот процесс брожения менее выгоден для организма, чем дыхание: продукты его извергаются (как у дрожжей) и, следовательно, бесполезны, или не извергаются (как у зеленых растений) и тогда даже отравляют организм; количество же освобождающейся энергии меньше чем при дыхании, а, следовательно, трата вещества менее производительна. Так как значение этих обоих процессов заключается в утилизации растением скрытой в веществе потенциальной энергии, то мы вправе далее уподобить этим процессам дыхания и брожения и все, совершающиеся в организме, процессы, имеющие результатом освобождение энергии (всякий экзотермический процесс) — каковы окисления сероводорода, аммиака (при нитрификации) и солей закиси железа, наблюдаемые в соответствующих бактериях. Таким образом, деятельность низших организмов характеризуется разрушением в значительных размерах получаемого извне вещества и обильным выделением продуктов этого разрушения в явлениях брожения, гниения, нитрификации, заразных болезней высших организмов (животных и в меньшей степени растительных). Этим объясняется факт, что явления превращения вещества, обозначаемые этими терминами, были известны человеку, утилизировались им или составляли предмет его опасений задолго до той поры, когда было обнаружено самое существование этих микроорганизмов.