Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по электронике5.doc
Скачиваний:
445
Добавлен:
02.05.2014
Размер:
6.88 Mб
Скачать

Фильтры на гираторах

При построении фильтров 2-го порядка и выше минимальное число элементов получается, если использовать L-C элементы (последовательное и параллельный колебательный контур).

Однако на НЧ габариты таких фильтров значительны, т. к. необходимы большие L и С.

0 = 1/

С помощью ОУ можно синтезировать как эквивалент индуктивности и эквивалент емкости. Такие схемы принято называть конверторами сопротивлений. Они позволяют преобразовать R в – R и наоборот, xL  xc. Т. е. используют емкость, а на выходе схемы – как индуктивность.

Гираторы – схемы, преобразующие реактивность сопротивление одного вида в реактивное сопротивление другого вида. В основе таких схем лежит также использование ИНУН, ИТУН и т. д.

Lэкв = R1*R2*C, если R1 >> R2

Rэкв = , где

Q – добротность синтезированной индуктивности

Q = 1/2

Добротность реальная: Q < 10

xL = L  при   xL

С   xc  UR1  UR2 

В т. а поступает через R2 возрастающее напряжение.

Таким образом, с т. зр. частотных свойств схема ведет себя как эквивалентная индуктивность.

При соединении её с емкостью С1 образуется последовательный колебательный контур LэквС1, его резонансная частота:

0 = 1/

Таким образом, особенно на НЧ можно строить эквивалентные индуктивности с малыми размерами, т. к. при большой величине R1 емкости С может быть достаточно маленькой.

Синтезирование реактивности позволяет создавать фильтры высоких порядков эквивалентные LC фильтры на пассивных элементов с малыми габаритами. Однако такие фильтры имеют «-»:

  • требуется источник питания;

  • имеет меньшую добротность, чем пассивный;

  • имеет большую нестабильность, особенно температурную;

  • обладает худшими шумовыми характеристиками.

Универсальные фильтры на оу

Для построения ФНЧ, ФВЧ, ПФ требуются различные схемы, однако существуют структуры на ОУ, позволяющие на одной схеме получать все 3 характеристики. При построении таких фильтров используют как интеграторы, так и дифференциаторы на ОУ.

Структура универсального фильтра 2-го порядка на 3-х оу

R1 = R2 = R

C1 = C2 = C

fф = 1/(2RC)

R3 = R5

|K| = Roc/R4 < 3

В основе структуры фильтра лежат 2 интегратора на ДА2 и ДА3, которые обеспечивают частотную характеристику схемы и порядок фильтра. Для построения универсального фильтра используются многопетлевые ОС через R3, R5 и Roc, которые обеспечивают суммирование внешних и внутренних сигналов на ОУ ДА1. Обычно используют одинаковые элементы, тогда fср = 1/2RC.

Внешними элементами являются конденсаторы С1 и С2. На выходе схемы ДА3 имеет место дважды проинтегрированный сигнал, т. е. выход фильтра ФНЧ. После ДА1 имеет место выход фильтра ФВЧ, т. к. на выход ДА1 имеет место сигнал, у которого из полного входного сигнала вычтены нижние частоты, следовательно, остаются только ВЧ. НА выходе ДА2 ослабляется ВЧ, следовательно, если R1C1 < R2C2 на выходе ДА2 остается полосовой сигнал или ПФ. Таким образом, в зависимости от использования выхода, эта схема выполняет функции ФНЧ, ФВЧ и ПФ, что позволяет на ее основе создавать различные фильтры.

По похожей структуре может быть построен универсальный фильтр и на дифференциаторах. Однако фильтр на интеграторах более устойчив.

Общее свойство фильтров на ОУ:

Потенциально устойчивые фильтры требуют использования полного числа ОУ. Фильтры с минимальным числом ОУ потенциально неустойчивы и при неблагоприятном сочетании параметров могут возбуждаться.