Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metadichka stroy mekh.doc
Скачиваний:
13
Добавлен:
20.08.2019
Размер:
6.68 Mб
Скачать

1.3. Основные уравнения строительной механики

Математическая сторона основной задачи строительной механики основана на зависимостях, полученных в сопромате. Напомним их на примере напряженно-деформированного состояния элемента рамы, для которого – в отличие от балки – поперечный изгиб сопровождается дополнительным растяжением или сжатием.

Пусть такой элемент длиной dx расположен в локальной системе координат Oxy, где ось Ox направлена по оси стержня, и загружен распределенной нагрузкой интенсивностью qx и qy вдоль Ox и Oy соответственно (рис. 1.20).

Рис.1.20

Напряженно-деформированное состояние стержня определяется девятью компонентами:

– внутренними усилиями (M, Q, N,);

– перемещениями (u, v, );

– деформациями (κ, , ).

Уравнения для определения этих функций можно разделить на три группы:

Статические уравнения – связывают внутренние усилия (рис. 1.20, б) с заданной нагрузкой:

dN/dx = – qx; 

dQ/dx = qy; ý (1.10)

dM/dx = Q . 

Геометрические уравнения – выражают деформации через перемещения, показанные на рис. 1.20, б, в:

κ = d/dx; 

 =   dv/dx;  (1.11)

 = du/dx. 

Физические уравнения – представляют собой зависимости между внутренними усилиями и деформациями:

κ = M/EJ; 

 = Q/GF;  (1.12)

 = N/EF; 

где E – модуль Юнга;

G – модуль сдвига;

F – площадь поперечного сечения стержня;

J – момент его инерции;

 – коэффициент, учитывающий неравномерность распределения касательных напряжений в поперечном сечении стержня.

Отметим, что выражения EJ и EF в (1.12) называются жесткостями стержня при изгибе и растяжении (сжатии) соответственно.

При решении системы уравнений (1.10) – (1.12) возможны два варианта:

1) внутренние усилия M, Q, N, удается найти из системы уравнений (1.10), не обращаясь к остальным уравнениям – это СОС;

2) внутренние усилия можно найти только путем совместного решения всех девяти уравнений – это СНС.

В последнем случае при решении этих уравнений возможны два подхода:

– в качестве основных неизвестных выбирают усилия M, Q, N, выражая все остальные через них – это решение в форме метода сил;

– в качестве основных неизвестных выбирают перемещения u, v,  – это решение в форме метода перемещений.

Системы, описываемые линейными уравнениями (1.10)  (1.12), называются линейно деформируемыми. Для них справедлив принцип суперпозиции, в соответствии с которым:

Внутренние усилия, перемещения и деформации от заданной нагрузки (или иного воздействия) можно найти как сумму соответствующих величин от каждой нагрузки в отдельности.

Примечания:

1. Первое из статических уравнений (1.10) получается из условия равновесия рассматриваемого элемента рамы. Полагая в его пределах qx = const, и составляя уравнение X = 0, получим:

N + qxdx + (N +dN) = 0,

откуда и следует искомая зависимость. Два других уравнения из (1.10) – это дифференциальные зависимости Журавского.

2. Первое из физических уравнений (1.12) представляет собой дифференциальное уравнение изогнутой оси балки:

κ = d/dx = d 2v/dx 2 = M /EJ.

Второе уравнение в предпосылке равномерного распределения касательных напряжений в поперечном сечении стержня ( =1) выражает закон Гука при сдвиге:

 = Q/F = G.

При этом мы не уточняем смысл коэффициента  по причине, которая будет указана в § 3.5. Последнее из физических уравнений (1.12) – это закон Гука при ЦРС:

 = N/F = E.

3. В дальнейшем, если не будет оговорено особо, мы будет по-прежнему применять обозначение Oxy для глобальной системы координат, связанной с конструкцией в целом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]