Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 1.doc
Скачиваний:
72
Добавлен:
14.04.2019
Размер:
4.82 Mб
Скачать

2.5. Видимое излучение.

Практически все представители животного мира обладают способностью что-то «видеть». Человеческий глаз реагирует только на крошечную часть диапазона электромагнитных излучений. Именно эта область и называется видимой. Принято, что для человеческого глаза диапазон видимых длин волн занимает промежуток от 380 до 780 нм. Однако не для всех животных и насекомых эта область является видимой. Например, пчёлы могут видеть в ближней ультрафиолетовой области. Это даёт им возможность ощутить различия в цветах, недоступных человеческому зрению. Реакция человеческого гла­за и мозга на разные длины волн и интенсивность света различается в диапазоне 380 – 780 нм и это дает ощущения, которые называются цветом, текстурой, прозрачностью и т. д. Белый свет можно создать смесью всей последовательности монохроматических излучений видимой части спектра, т.е. смесью отдельных цветов (Рис. 1.2.5). Что касается человеческого глаза, то возможна такая комбинация отдельных монохроматических излучений, когда только создаётся впечатление бе­лого света, хотя он может и не быть таким по спектральному составу.

Рис. 1.2.5 – Разложение «белого» видимого света на спектральные составляющие с различными длинами волн от красного (К) до фиолетового (Ф).

Цвет и его происхождение занимали воображение многих ве­ликих естествоиспытателей. Однако лишь И.Ньютону удалось раз­работать основы теории цвета. В 1672 г. Ньютон экспе­риментально показал, что проходящий через стеклянную приз­му пучок белого света разлагается в спектр, состоящий из боль­шого числа цветов (от красного до фиолетового), которые в местах перехода посте­пенно меняются один на другой. Эти цвета являются составля­ющими, а не видоизменениями белого света. Рис. 1.2.5 иллюстри­рует это хорошо знакомое свойство прозрачных материалов и света. Объяснение экспериментальных наблюдений Ньютона с призмой заключается в том факте, что свет всех длин волн про­ходит с одной и той же скоростью только в пустоте – вакууме. Однако в любой другой среде свет разных длин волн распространяется с разной скоростью. В результате этого может проис­ходить разделение волн. Разложение средой белого света на разные цвета, или, что равнозначно, на разные длины волн, на­зывается дисперсией. Тем самым удобно подразделить видимый диапазон в соответствии с различной реакцией на цвет, вызван­ной в человеческом глазе, на семь интервалов, простирающих­ся от самой длинной до самой короткой длины волны. Эти ин­тервалы соответствуют красному, оранжевому, желтому, зеле­ному, голубому, синему и фиолетовому цвету.

Поскольку при разложении призмой видимого (белого) света в непрерыв­ный спектр в последнем цвета плавно переходят один в другой, то точно определить границы каждого цвета и связать их с определенной длиной волны затруднительно. Но приблизительно они выглядят так:

фиолетовый – 380…440 нм;

синий – 440…480 нм;

голубой – 480…510 нм;

зеленый – 510…550 нм;

желто-зеленый – 550…575 нм;

желтый – 575…585 нм;

оранжевый – 585…620 нм;

красный – 620…780 нм.

Электромагнитные излучения с длиной волны более 700 нм и менее 400 нм практически уже не воспринимаются глазом и поэтому достаточно часто в популярной литературе именно в этом диапазоне задают пределы видимых излучений, что не соответствует действительному положению.

Случай нормальной дисперсии представлен на рис. 1.2.5. Он наблюдается для бесцветной прозрачной среды. Этот вид дис­персии называется нормальной в связи с тем, что красный свет (наибольшая длина волны) имеет самую высокую скорость и наименьшую дисперсию, а фиолетовый свет (са­мая короткая длина волны) имеет самую низкую скорость и наибольшую дисперсию. Между красным и фиолетовым после­довательно размещаются другие цвета. Более точно – дисперсия видимого света с длиной волны изменяется прибли­зительно по закону 1/λ3. По этой причине самые короткие дли­ны волн обладают наибольшей дисперсией (1/λ3 возрастает) и большой степенью ее изменения при малых вариациях (функ­ция 1/λ3 нелинейна по λ) по сравнению с длинными волнами. Следует упомянуть, что иной тип разделения света по длинам волн, называемый аномальной дисперсией, наблюдается в цвет­ной среде. В области спектра, в которой происходит поглощение света, при аномальной дисперсии самые длинные волны имеют большую дисперсию по сравнению с короткими. Следователь­но, последовательность цветов в соответствии с рис. 1.2.5 не со­блюдается. Видимый свет может также вызвать многие химические реакции.

Подробно механизм восприятия видимых излучений изложен в §4.