Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 1.doc
Скачиваний:
72
Добавлен:
14.04.2019
Размер:
4.82 Mб
Скачать

2.2. Лучистая энергия и лучистый поток.

Энергию, излучаемую в области оптического спектра излучений, называют лучистой энергией или энергией излучения и обозначают Wе (можно также встретить обозначение энергии буквой Q). Если энергия переносится всей совокупностью длин волн, входящих в состав излучения, то она называется интегральной и измеряется в тех же единицах,что и другие виды энергии (джоуль, электрон-вольт).

Общая мощность, переносимая электромагнитным излучением независимо от его спектрального состава, в светотехнике получила название поток излучения или лучистый поток, обозначается Fe и измеряется в ваттах (Вт):

Fe = We/t, Вт. (1.2.5)

2.3. Спектральный состав оптических излучений.

Общий спектр электромагнитных излучений можно разделить на ряд основных областей:

  1. Область космических излучений.

  2. Область гамма-излучений.

  3. Область рентгеновских излучений.

  4. Область оптического спектра излучений.

  5. Радиоволновая область.

  6. Ультразвуковая и звуковая область.

  7. Силовая область.

Область оптических излучений соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и её можно разделить на три области: ультрафиолетовую (УФ), видимую и инфракрасную (ИК).

Ультрафиолетовая область оптического излучения лежит в пределах 1…380 нм. Международная комиссия по освещению (МКО) предложила следующее деление УФ-излучений с длинами волн от 100 нм до 400 нм: УФ-А – 315…400 нм; УФ-В – 280…315 нм; УФ-С –100…280 нм.

Видимое излучение (свет), попадая на сетчатую оболочку глаза, в результате осознанного превращения энергии внешнего раздражителя вызывает зрительное ощущение. Диапазон длин волн монохроматичеких составляющих данного излучения соответствует 380…780 нм.

Длины волн монохроматических составляющих инфракрасного излучения больше длин волн видимого излучения (но не более 1 мм). МКО предложила следующее деление области ИК-излучений: ИК-А – 780…1400 нм; ИК-В – 1400…3000 нм; ИК-С – 3000 нм (3 Мкм)…106 нм (1 мм).

Именно эти три области оптических излучений представляют наибольший интерес для светотехники. Но практически все электромагнитные излучения в той или иной степени воздействуют на атомы и молекулы различных веществ. В таблице 1.2.2 обобщены те явления, которые происходят в молекулах при воздействии на них электромагнитных излучений различных длин волн.

Таблица 1.2.2.

Все энергии электромагнитного излучения, которые одновременно облучают Землю, воспроизводят только небесные явления. Однако в земных условиях, если необходимо воспроизвести излучение в широком диапазоне энергий, необходимо обладать несколькими источниками энергии; например, явление, при котором возника­ет рентгеновское излучение, не возбуждает одновременно радио­волн и наоборот. Следует отметить, что явления, перечислен­ные в табл. 1.2.2 в качестве примера реакций молекул при воз­действии на вещество различных энергетических зон, часто удоб­но использовать для того, чтобы воспроизводить эту энергию. Так, видимый свет будет вызывать низкоэнергетические элек­тронные возбуждения в валентной оболочке атома, однако он может быть воспроизведен электронным снятием возбуждения в валентной оболочке атома при его переходе с высших уров­ней вниз в основное состояние.

Вид электромагнитной волны с самой низкой энергией встре­чается в генераторах, используемых для получения электрического тока. В Украине частота промышленного электрического переменного тока стандартизована и равна 50 Гц. Такая частота воспроизводит длину волны 6·106 м. Так называемый звуковой и ультразвуковой диапазон электромагнитного излучения используется в аудио- и ультразвуковой технике.

Радиоволны являются электромагнитными волнами с наи­меньшей энергией, которые могут оказывать непосредственное воздействие на отдельные атомы. Однако энергия этих волн на­столько мала, что она может только передвигать целые молеку­лы на короткое расстояние в пространстве (трансляция) и пе­реориентировать некоторые ядра по отношению к другим яд­рам в молекулах. Последний эффект лежит в основе спектроско­пического метода ядерного магнитного резонанса. Энергии, со­ответствующие микроволновой области, заставляют молекулы газа вращаться вокруг их центров масс и также меняют взаим­ную ориентацию электронов. Первый эффект составляет основу микроволновой спектроскопии, используемой для изучения мо­лекулярных вращений, второй – основу электронной спиновой резонансной спектроскопии, применяемой при изучении состоя­ния неспаренных электронов в химических системах.

Энергии, соответствующие инфракрасной области, вступают в резонанс с колебаниями атомов в химических связях. Этот эффект используется в инфракрасной спектроскопии. Энергии видимой и ультрафиолетовой областей могут вызывать возбуж­дение электронов в атомах и молекулах с их переводом из ниж­них энергетических состояний в верхние. Так как энергия лучей возрастает, возбуждаемые электроны переходят в новое состоя­ние с более стабильных энергетических уровней. Видимая аб­сорбционная спектроскопия имеет дело с возбуждением элект­ронов наиболее удаленных оболочек атомов и молекул, в то время как ультрафиолетовая абсорбционная спектроскопия – с возбуждениями электронов более высоких энергий как с уда­ленных, так и с внутренних оболочек. Рентгеновское излучение вызывает возбуждения электронов во внутренних электронных оболочках, поскольку имеет длину волны, которая близка к размерам самих атомов. Атомы могут вызывать дифракцию рентгеновских лучей. Возбуждение лежит в основе рентгено-спектрального флуоресцентного анализа и спектроскопии рент­геновских фотоэлектронов (ESCA), в то время как дифрак­ция используется для идентификации кристаллической решетки и определения кристаллической структуры. Гамма-лучи пригод­ны для применения электромагнитного излучения с наибольшей энергией. Они вызывают возбуждение ядер с их переводом из нижних энергетических состояний в высшие и лежат в основе мёссбауэровской спектроскопии.

Большая часть диапазона энергий электромагнитного излу­чения имеет важные применения в физике, химии и биологии.

Однако, что касается произведений искусства и светотехнических материалов, то наибольшее значение имеют средние энергии (ультрафиолетовая, видимая и инфракрасная) в связи с тем, что именно они воздействуют на них. Если последовально расположить ультрафилетовую, видимую и инфракрасную область излучений, то получим более подробную их классификацию (Рис.1.2.4).

Рис.1.2.4 – Развёрнутая область спектра электромагнитных излучений.

Мощное ультрафиолетовое и инфракрасное излучение оказывают на человека вредное воздействие: ульт­рафиолетовое вызывает ожоги кожи и глаз, а инфракрасное затрудняет работу из-за большого количества выделяемого тепла.