Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум по гидравлике.doc
Скачиваний:
92
Добавлен:
12.04.2015
Размер:
4.55 Mб
Скачать

Лабораторная работа № 4.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКИХ ПОТЕРЬ НА ТРЕНИЕ (4 ЧАСА)

4.1 Цель работы:

– иллюстрация уравнения Бернулли и демонстрация пьезометрической линии;

– определение численных значений коэффициентов гидравлических потерь на трение;

– определение характера зависимости гидравлических потерь на трение и коэффициента потерь от числа Рейнольдса, средней скорости и расхода потока.

4.2 Подготовка к лабораторной работе:

– изучить материал по теме данной работы в настоящем пособии;

– выучить определения основных понятий и терминов темы.

Основные термины и понятия:

– автомодельный режим движения;

– внутренняя задача гидродинамики;

– вязкость;

– гидродинамический напор;

– гладкое течение;

– зона стабилизации;

– коэффициент гидравлических сопротивлений;

– «потерянный напор».

4.3 Теоретические сведения

Гидравлические потери на трение – потери при движении жидкости в прямых каналах, трубах (рисунок 4.1), поперечное сечение которых постоянно по форме и площади. Потери на трение обусловлены вязкостным трением слоев жидкости, движущихся внутри потока с разной скоростью, а также трением о внутреннюю поверхность трубы слоев жидкости, движущихся в непосредственной близости от нее. Однако величина потерь на трение определяется не только вязкостью жидкости, но и зависит от скорости ее движения, от площади внутренней поверхности канала и ее шероховатости. Площадь поверхности канала, как известно, зависит от его длины и формы поперечного сечения.

Рисунок 4.1 – К определению гидравлических потерь на трение

В расчетах величина потерь на трение подсчитывается по формуле Вейсбаха–Дарси:

(4.1)

где λ – коэффициент гидравлических потерь на трение (по длине);

l – длина прямого участка трубы, м;

dэ – эквивалентный диаметр канала, м.

Коэффициент гидравлических потерь λ является мерой отношения скоростного напора и величины потерь на трение на участке

длиной, равной эквивалентному диаметру канала (см. рисунок 4.1), то есть когда l = dэ. При ламинарном режиме движения коэффициент λ зависит только от числа Рейнольдса:

, (4.2)

а величина потерь на трение для круглой трубы может быть подсчитана как по формуле (4.1) Вейсбаха–Дарси, так и по формуле Пуазейля:

(4.3)

где ν – кинематический коэффициент вязкости жидкости, м2/с;

Q – расход жидкости, м3/с;

dвнутренний диаметр трубы, м.

При турбулентном режиме движения коэффициент λ зависит как от числа Рейнольдса, так и от относительной шероховатости поверхности стенок канала. При этом, как показано в опытах И.И. Никурадзе, при турбулентном режиме существует три области гидравлического трения:

– область гидравлически гладких труб, где λ = f(Re);

– область доквадратичного сопротивления, где λ = f(Re, Δ/d);

– область квадратичного сопротивления (турбулентной автомодельности), где λ = f(Δ/d).

М

Рисунок 4.2 – Схема гидравлического

трения при турбулентном режиме

движения жидкости

еханизм гидравлического трения в каждой из этих областей зависит от соотношения размеров ламинарного подслоя толщинойδ и размеров шероховатости внутренней поверхности канала Δ (рисунок 4.2).

В области гидравлически гладких труб δ > Δ. Поэтому вязкий подслой покрывает выступы шероховатости, и турбулентное ядро потока не взаимодействует с шероховатостью.

В области доквадратичного сопротивления (δ ≈ Δ) происходит постепенное «раскрывание» шероховатости турбулентным ядром. Здесь имеет место общий случай зависимости λ = f(Re, Δ/d).

И, наконец, в области квадратичного сопротивления, когда выступы полностью «раскрыты», значение λ зависит только от размеров шероховатости.

На практике при расчете технических труб границы областей гидравлического трения определяют в зависимости от предельных чисел Рейнольдса:

(4.4)

(4.5)

где относительная эквивалентная шероховатость;

–эквивалентная шероховатость, характеризующая среднюю высоту выступов технических труб.

Если Reкр < Re < ReпрI, имеем область гидравлически гладких труб. Для расчета коэффициента гидравлического трения рекомендуется формула Блазиуса:

. (4.6)

Если ReпрI < Re <ReпрII, имеем область доквадратичного сопротивления. Для расчета коэффициента λ рекомендуется формула Альтшуля:

(4.7)

Если Re > ReпрII, имеем область квадратичного сопротивления. Рекомендуется формула Шифринсона:

(4.8)

Для всех областей и режимов движения жидкости в трубах с естественной шероховатостью коэффициент гидравлического трения можно определить с помощью графика КольбрукаМурина.

При установившемся движении жидкости в горизонтальных каналах с постоянным по форме и размерам поперечным сечением средняя скорость потока и, следовательно, скоростной напор одинаковы во всех сечениях. Поэтому уравнение Бернулли (3.3) принимает вид:

откуда

(4.9)

Таким образом, гидравлические потери на трение можно измерить непосредственно (см. рисунок 4.1) как разность Δh высот уровней h1 и h2 жидкости в пьезометрах, установленных в начале и в конце рассматриваемого участка длиной l, то есть

. (4.10)