Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции+химия+нефти+и+газа.doc
Скачиваний:
206
Добавлен:
15.02.2015
Размер:
1.19 Mб
Скачать

Лекция 17

Тема: Термодинамика и кинетика термических процессов переработки нефти.

Энергия Гиббса G илиизобарно –изотермический потенциал- это та часть внутренней энергии системы, которая может быть превращена в работу. Если при выбранных условиях запас энергии Гиббса уменьшается (т.е.G0), это означает, что часть внутренней энергии системы превращается в работу, в данном случае в работу по деструкции углеводородов, и реакциясамопроизвольно будет протекать слева направо.

Термодинамические расчеты позволяют определить условия протекания процесса и вероятность образования того или иного продукта реакции. По величине Gможет быть рассчитана константа равновесия Кр. Зная константу равновесия Кр, алгебраическим путем можно подсчитать достижимые выходы продуктов реакции.

В процессе исследования технолог на основе термодинамических расчетов устанавливает, является ли благоприятным для целевого выхода продукта, выбранное направление протекания процесса. Но ему также необходимо знать с какой приемлемой для технологических целей скоростью будет протекать термический процесс, и за какое время достигается необходимая степень превращения. Эти данные получают из основных понятий химической кинетики.

Химическая кинетика- наука о механизмах и скоростях химических реакций. Установление механизма протекающих процессов и определение их скорости – одна из важнейших задач в решении технологических проблем.

Под скоростью реакцииподразумевают скорость реагирования - или изменение концентрации реагирующего вещества в единицу времени и в единице объема. Степень превращения реакции определяет полноту (или глубину) протекания реакции. Степень превращения можно выразить через концентрации:

где С0– концентрация исходного вещества в начальный период реакции

С – концентрация исходного вещества к моменту времени t.

Большинство реакций углеводородов нефти характеризуются небольшими скоростями и соответственно большими энергиями активации. Энергия активации– это минимальная дополнительная энергия, которую нужно сообщить исходным веществам, чтобы произошла реакция. Энергия активации реакций крекинга, определяющая их скорости колеблется в пределах 200- 280 кДж/моль.

Если сравнивать энергии связи, можно сделать вывод, что в первую очередь будут разрываться связи углерод-гетероатом с выделением летучих гетеросоединений (обычно это - СО2, Н2S, H2O, NH3и др.), а затем будут распадаться соединения, содержащие связи С-С и С-Н. Причем в случае парафинов менее прочны связи углерод-углерод, а у аренов углерод-водород.

Продукты радикальной термической деструкции по связям С-С стабилизируются за счет образования более легкого парафина и олефина:

СН3 –СН2 - СН2 - СН3 2СН3-СН2 СН3 – СН3 + СН2=СН2

Таким образом, соотношение энергий активации реакций деструкции связей так же способствует образованию низкомолекулярных летучих веществ и высокомолекулярных ароматических систем, как и термодинамические характеристики этих процессов.

Для увеличения скорости процессов крекинга приходится повышать температуру или применять катализаторы. Как известно, для большинства реакций при повышении температуры на каждые 100С скорость реакции увеличивается в 2-4 раза.

Обычно повышением температуры и достигается требуемая степень превращения исходного сырья. Однако на практике часто бывают случаи, когда приходится повышать температуру в ущерб термодинамической вероятности, с тем, чтобы получить реальный выход продуктов реакции. Хотя при этом возможен выход и с малыми равновесными концентрациями, т.е. с небольшим значением константы равновесия (Кр) для данной реакции.