Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИЯ 3 [РМ УГД ] Схема Неймана-Рихтмайера.doc
Скачиваний:
5
Добавлен:
22.11.2019
Размер:
886.78 Кб
Скачать

3.2 Способы описания газодинамических течений и построение разностных схем.

Характер применяемых схем интегрирования уравнений газовой динамики существенно зависит от способа описания течения. Выделим три наиболее важных из них.

1-й способ. Область плоскости , в которой рассматривается движение, разбивается сильными и слабыми разрывами на отдельные области гладкого течения, в которых удовлетворяются уравнения газовой динамики, в то время как на самих разрывах удовлетворяются условия совместности. В таком рассмотрении обобщенное решение есть совокупность гладких решений, определяемых в областях и примыкающих друг к другу через линии разрывов с соблюдением условий совместности. При таком описании возникает необходимость численного интегрирования уравнений газовой динамики в областях с выполнением условий примыкания на линиях разрыва.

Наиболее известным разностным методом, соответствующим этому способу описания, является метод характеристик. Действительно, среди линий раздела мы имеем слабые разрывы и контактные границы, являющиеся характеристиками, что и делает удобной характеристическую разностную схему.

Полная детальность описания течения, составляющая положительную черту метода характеристик, затрудняет одновременно его реализацию на ЭВМ из-за сложной логики расчета особенностей и построения фронта расчета.

Разумеется, что метод характеристик (мы его подробно рассмотрим в последующих лекциях) не является единственным разностным методом, который может быть применен в рамках детального описания течения газа.

2-й способ. Обобщенное решение определяется интегральными законами сохранения в эйлеровых или лагранжевых координатах. Такое описание является единообразным, поскольку как уравнения газовой динамики, так и условия совместности являются следствиями законов сохранения.

Разностные схемы, соответствующие второму способу описания, получаются единообразной аппроксимацией законов сохранения независимо от характера течения и поэтому носят название однородных схем или схем сквозного счета.

3-й способ. Обобщенное решение определяется как предел классического решения некоторой системы квазилинейных параболических уравнений с малыми параметрами при старших производных.

Если

(3.1)

есть исходная система уравнений газовой динамики, записанная в виде законов сохранения, то соответствующая параболическая система имеет вид:

(3.2)

Здесь - вектор-функция, описывающая течение, , - векторные функции от векторного аргумента , - квадратная матрица, - малый параметр.

Матрица должна быть подобрана таким образом, чтобы решение системы (3.2) обладало достаточной гладкостью и при приближалось в каком-то смысле к решению системы (3.1).

Разностные схемы, основанные на третьем способе рассмотрения, также имеет характер сквозного счета. В некоторых случаях второй и третий подходы приводят к одинаковым схемам.

Сделаем несколько замечаний по поводу граничных условий в задачах газовой динамике.

Постановка граничных условий зависит как от характера рассматриваемой задачи, так и от способа описания течения и в первую очередь от принятой системы координат. Если перечислить все достоинства и недостатки аппроксимации граничных условий в разных системах описания – эйлеровых и лагранжевых, то становится понятным, что универсального и наилучшего способа разностного решения задач газовой динамики нет. В реальных расчетах приходится приспосабливаться к конкретной задаче и применять различные способы.