Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
228.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
1.4 Mб
Скачать

Івано-Франківський національний технічний

університет нафти і газу

Кафедра зносостійкостісті і відновлення деталей

Михайлів Н.П.

МАТЕРІАЛОЗНАВСТВО

ЛАБОРАТОРНИЙ ПРАКТИКУМ

Для студентів технічних спеціальностей

2003

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Івано-Франківський національний технічний

університет нафти і газу

Кафедра зносостійкості і відновлення деталей

Михайлів Н.П.

МАТЕРІАЛОЗНАВСТВО

ЛАБОРАТОРНИЙ ПРАКТИКУМ

Для студентів технічних спеціальностей

МВ 02070855-1182-2003

Івано-Франківськ

2003

МВ 02070855-1182-2003

Михайлів Н.П. Матеріалознавство. Лабораторний практикум. - Івано-Франківськ: Факел, 2003.-118 с.

Лабораторний практикум підготовлено для студентів всіх технічних спеціальностей денної та заочної форм навчання, які вивчають курс “Матеріалознавство” згідно з навчальними та робочими програмами.

Рецензент доктор.техн.наук, професор Мельник П. І.

  • Дане видання — власність ІФНТУНГ. Забороняється тиражування та розповсюдження.

МВ 02070855-1182-2003

Михайлів Н.П. Матеріалознавство. Лабораторний практикум. - Івано-Франківськ: Факел, 2003.- 118с.

Лабораторний практикум підготовлено для студентів всіх технічних спеціальностей денної та заочної форм навчання, які вивчають курс “Матеріалознавство” згідно з навчальними та робочими програмами.

Рецензент доктор.техн.наук, професор Мельник П. І.

Відповідальний за випуск зав. кафедри

зносостійкості та відновлення деталей

доктор технічних наук, професор Криль Я. А.

Нормоконтролер Гургула О. Г.

Коректор Будуйкевич Н.Ф.

Голова експертно – рецензійної

колегії університету Костриба І. В.

© Дане видання — власність ІФНТУНГ. Забороняється тиражування та розповсюдження.

Зміст

  1. Дослідження процесу кристалізації …………………...…...4

  2. Макроскопічний метод дослідження металів і сплавів .... 11

  3. Мікроскопічний метод дослідження металів і сплавів ....15

  4. Визначення твердості металів ………………………….....22

  5. Діаграма стану двокомпонентних сплавів ......................... 29

  6. Діаграма стану залізо-вуглець .............................................42

  7. Перетворення в залізовуглецевих сплавах

  8. при нагріванні і охолодженні ..............................................48

  9. Вивчення структури і властивостей

  10. вуглецевих сталей .................................................................54

  11. Вивчення структури і властивостей чавунів ......................59

  12. Гартування cталей ................................................................ 65

  13. Відпускання загартованої сталі ...........................................75

  14. Вивчення структури і властивостей сталей після по­верх­невого зміцнення методом хіміко-термічної обробки ............80

  15. Вивчення структури і властивостей легованих сталей .....88

  16. Структура і будова сплавів на основі міді .........................94

  17. Структура і властивості сплавів на основі алюмінію .......98

  18. Структура і властивості антифрикційних сплавів ...........102

  19. Структура і властивості фрикційних матеріалів ............. 107

  20. Структура і властивості композиційних матеріалів ........110

Додатки.......................................................................................114

Робота №1

Дослідження процесу кристалізації

1 Мета роботи

1.1 Ознайомитись з процесом кристалізації і формою кристалів, які утворюються при кристалізації розчину солей.

1.2 Ознайомитись з будовою стального виливка.

2 Технічні засоби навчання

2.1 Насичені розчини солей: хлористого амонію NH4Cl, біхромату калію K2Cr2O7, алюмокалієвого галуну (KAlSO4)·12H2O.

2.2 Мікроскоп біологічний.

2.3 Скляні пластинки, електроплитка, піпетка.

3 Теоретичні відомості

Перехід речовини з рідкого агрегатного стану в твердий при охолодженні відбувається за двома основними схемами: аморфитизація і кристалізація. Аморфитизація забезпечує лише формування ближнього порядку розташування атомів і такі речовини називаються аморфними. Кристалізація забезпечує як ближній порядок, так і дальній порядок розташування атомів і такі речовини називаються кристалічними. Вони можуть бути як чистими хімічними елементами, так і хімічними, чи електронними сполуками, а також твердими розчинами.

Кристалізацією називають процес переходу металу із рідкого стану в твердий кристалічний.

Причиною кристалізації або перекристалізації (зміни фазового стану) є природне намагання системи зайняти такий стан, при якому запас її вільної енергії є мінімальним. Це положення добре ілюструється характером зміни вільної енергії системи, наведеним на рисунку 1.1.

Термодинамічно це записується як різниця між значенням повної енергії та енергії при певній температурі:

G=E – TS,

де E – повна енергія системи;

G – вільна енергія;

Т – температура;

S – ентропія (міра безпорядку системи).

Рисунок 1.1 – Зміна вільної енергії металу в рідкому GР та твердому GТ станах залежно від температури (Tк – температура, при якій протікає кристалізація)

При температурі Тп рідка і тверда фази знаходяться в термодинамічній рівновазі, тому процесу кристалізації не відбувається, бо центри кристалізації, які виникли спонтанно так само спонтанно розчиняються в рідині. Тому температура в точці Тпл є теоретичною температурою кристалізації (або плавлення при нагріві).

Для протікання процесу кристалізації необхідно, щоб вільна енергія твердого стану була меншою, ніж рідини. Це є можливим при переохолодженні до температури нижче теоретичної температури кристалізації. Тоді різниця вільних енергій металу в рідкому і твердому стані рівна:

ΔG=GР-GT>0.

Різниця між теоретичною і дійсною температурою кристалізації називається ступенем переохолодження

ΔТ=Тп – Тк

Із збільшенням ступеню переохолодження збільшується різниця вільних енергій твердого і рідкого стану, а тому повинна рости швидкість процесу кристалізації. Але процес кристалізації зв’язаний з переміщенням атомів металу і залежить від швидкості дифузії. Збільшення швидкості переохолодження зменшує швидкість дифузії, а відповідно гальмує ріст кристалів.

Як відомо, кристалізація складається з двох процесів: утворення зародків (центрів кристалізації) та росту кристалів з цих центрів. Обидва процеси характеризуються власними швидкостями, які становлять параметри кристалізації.

Першим параметром кристалізації є швидкість утворення зародків (n), яка характеризує кількість зародків, що утворюються в одиниці об’єму за одиницю часу і вимірюється в см-1-1. Другий параметр (с) – лінійна швидкість росту кристалів – характеризує зміну лінійних розмірів кристала і вимірюється в см/с. Досліджуючи кристалізацію прозорих органічних речовин при різних температурах, Г.Таман встановив, що ці параметри залежать від ступеню переохолодження (рисунок 1.2).

Як видно з рисунка 1.2 із збільшенням ступеню переохо­лодження значення с і n зростають, досягають максимума, а потім понижуються і при великих ступенях переохолодження практично падають до нуля.

Слід звернути увагу на те, що швидкість утворення зародків (їх число) зростає повільніше ніж швидкість росту кристалів. Таким чином співвідношення між параметрами n і с при різних ступенях переохолодження різне. А від співвідношення параметрів n і с залежать розміри зерен в металах.

Рисунок 1.2– Залежність швидкості утворення зародків кристалізації і швидкості росту кристалів від ступеню переохолодження

За теорією Тамана кількість зерен N пропорційна швидкості утворення центрів кристалізації n і обернено пропорційна швидкості росту кристалів с:

N=k·n/c,

де k – сталий коефіцієнт.

Підбираючи ступінь переохолодження можна регулювати величину зерна в металі. При малих ступенях переохолодження (наприклад при ΔТ1, рисунок 1.2) виникає мало центрів кристалізації, а швидкість росту кристала велика, внаслідок чого формується грубозерниста структура. У випадку, коли швидкість утворення зародків велика, а швидкість росту кристала мала (наприклад при ΔТ2, рисунок 1.2) формується дрібнозерниста структура. Надто великі ступені переохолодження можуть взагалі загальмувати виникнення центрів кристалізації і тоді метал переходить у твердий аморфний стан.

Розмір зерна впливає на механічні та інші властивості металів. Дрібнозернистий метал має більшу міцність, в’язкість і пластичність.

Розрізняють дві форми кристалізації: нормальна і дендритна (деревоподібна). При нормальній формі кристалізації кристал зростає за рахунок нашарування атомних площин на гранях кристала приблизно рівномірно з усіх сторін, в результаті чого утворюється геометрично правильний кристал (рисунок 1.3, а, б).

При дендритній кристалізації ріст кристала йде в певних напрямках, які звуться вісями кристалів. Спочатку утворюється вісь першого порядку, потім – другого, третього і т.д. (рисунок 1.3, в).

Поки утворені кристали омиває розплав, вони ростуть вільно і мають більш-менш правильну геометричну форму. Та коли закристалізовуються останні ділянки розплаву, кристали стикаються між собою і втрачають правильну геометричну форму – утворюються кристаліти (зерна).

а,б – нормальна кристалізація; в – дендритна

Рисунок 1.3 – Форма кристалів

В природі переважає дендритна кристалізація. За цією схемою кристалізуються технічні метали і сплави. Форма кристала залежить від швидкості і напрямку відводу тепла при кристалізації рідини, наявності нерозчинних частинок та інших факторів. При направленому відводі тепла виростають витягнуті кристали. В цьому плані характерною є будова металевого виливка (рисунок 1.4).

усадочна раковина

зона 1- дрібнозерниста

зона 2- стовпчаті кристали

зона 3- рівноосні кристали

зона ліквації

Рисунок 1.4 – Схема будови виливка спокійної сталі

Кристалізація розпочинається на стінках виливниці (форми). При першому дотиканні до стінок виливниці в тонкому шарі рідкого металу виникає різкий градієнт температур і явище переохолодження, яке веде до утворення великої кількості центрів кристалізації. Швидкість росту кристалів в цій зоні невелика (рисунок 1.2), внаслідок чого формується дрібнозерниста структура.

Дальше формується зона витягнутих (стовпчастих) кристалів (зона 2). Після утворення дрібнозернистої зони 1 умови тепловідводу змінюються із-за підвищення температури стінки виливниці та інших причин, градієнт температур в прилягаючому шарі рідкого металу різко зменшується і зменшується ступінь переохолодження. В результаті із невеликого числа центрів кристалізації починають рости нормально орієнтовані до поверхні зони 1 (тобто в напрямку відводу тепла) стовпчасті кристали.

В центрі виникає зона 3, яка складається з великих рівноосних кристалів. Це вказує на те, що в цій зоні виникає мало центрів кристалізації, а швидкість росту кристала досить висока із-за невеликого ступеню переохолодження.

4 Завдання і порядок виконання роботи

4.1 На скляну пластинку за допомогою піпетки нанести краплю перенасиченого розчину солі.

4.2 Помістити пластинку на предметний столик мікроскопа і спостерігати процес кристалізації.

4.3 Проробити пункти 4.1 і 4.2 для кожного розчину солей.

4.4 Зарисувати схематично кристалізаційну картину.

4.5 Зарисувати будову запропонованого виливку металу.

5 Контрольні запитання

5.1 Які процеси лежать в основі кристалізації?

5.2 Які параметри характеризують процеси кристалізації?

5.3 Що таке ступінь переохолодження?

5.4 Як змінюються параметри кристалізації в залежності від ступеню переохолодження?

5.5 Що таке зерно? Яка різниця між зерном і кристалом?

5.6 Від чого залежить розмір зерна?

5.7 Як впливає форма і розмір зерен на механічні властивості металів?

5.8 Пояснити чому на холодному склі утворюється дрібнозерниста структура.

Робота №2 Макроскопічний метод дослідження металів і сплавів

1 Мета роботи

1.1 Ознайомитись з методикою дослідження структури металів і сплавів за зломом та макрошліфом.

1.2.Ознайомитись з методикою виготовлення макрошліфу.

2 Прилади та технічні засоби навчання

2.1 Заготовки макрошліфів.

2.2 Зразки зломів металів і сплавів.

2.3 Набір шліфувальних шкірок і травників.

2.4 Зразки макрошліфів.

2.5 Лупа.

2.6 Фотопапір, 5% розчин сірчаної кислоти, розчин гіпосульфіту (фіксаж).

3 Методичні вказівки до самостійної роботи

Метод макроаналізу не дає кількісної, а лише якісну оцінку бу­дови і відповідно властивостей матеріалу. Макроаналіз проводиться візуально не­озброєним оком або із збільшенням до 50 раз ( розрізна здатність лупи) за зломом поверхні або спеціально виготовленим макрошліфом. Макроаналіз дозволяє визначити:

1. Порушення суцільності металу (усадочна рихлість, флокени, газові пустоти і раковини, тріщини, непровари в зварних з'єднаннях, неметалеві включення і т.п.).

2. Будову сплаву (розмір зерен, їх форму, розташування, дендритну будо­ву виливка та інше ).

3. Хімічну неоднорідність розташування, деяких елементів у сплаві (ліквацію).

4. Будову сплаву, яка утворилась в результаті термічної обробки, наприклад, зону цементації, поверхневого гартування та інше.

5.Будову сплаву, викликану обробкою тиском (волокнис­тість будови, лінії зсуву в наклепаному металі).

Для дослідження макроструктури використовують метод шліфів і метод зломів. Вид злому досліджують спостереженням, а інші особливості макроструктури – на макрошліфах.

Макроаналіз за зломом. Вивчаючи вигляд злому можливо встановити характер руйнування виробу (крихке, в'язке чи втомне).

В площині злому можуть бути виявлені дефекти, які сприяли руйнуванню металу.

Крихкий злом може бути дрібнозернистим або ж грубозернистим і характери­зується кристалічністю без слідів протікання пластичної деформації.

В'язкий злом має характерну волокнисту будову, яка формується в результаті протікання пластичної деформації.

Втомний злом завжди має дві зони руйнування: втомну дрібнозернисту і зону крихкого або в'язкого руйнування в залежності від властивостей матеріалу

Макроаналіз за макрошліфом. За направленням (розташуванням) волокон, які утворились в результаті обробки металу тиском в гарячому стані, можна визначити якій обробці піддавався метал при виготовленні досліджуваного виробу, а також в окремих випадках передбачити надійність експлуатації такого виробу.

Це важливо знати для таких виробів, як колінчасті вали, зубчасті колеса, клапани, гаки підйомних кранів, де потрібно добиватись розташування волокон за профілем деталі.

Макрошліф виготовляють таким чином. З тієї частини деталі або заготовки, яка для конкретного дослідження становить найбільший інтерес вирізують зразок. Вирізування зразка із заготовки або деталі проводиться на металорізальних верстатах, механічною або ручною пилкою по металу, а з матеріалу після термообробки – відрізним наждачним кругом. Щоб не спричинити суттєвих змін у будові металу, потрібно уникати значного нагріву зразка під час вирізування. За допомогою напильника або шліфувального круга, вирівнюють поверхню призначену для макроаналізу.

Отриману таким чином поверхню зразка шліфують на шліфувальних паперах з різною зернистістю абразива механічно або вручну.

Спочатку виконують грубе шліфування на спеціальному абразивному крузі або на спеціальному крупнозернистому шліфувальному папері. Під час щліфування на абразивному крузі необхідно застосовувати інтенсивне охолодження, з метою запобігання термічного впливу на внутрішню будову зразків. Грубе шліфування закінчують після повного вирівнювання всієї поверхні шліфа.

Після грубого шліфування зразок очищують від частинок відокремленого металу та зруйнованого абразива і шліфують на шліфувальному папері з поступовим переходом від паперу з розміром абразивних частинок від 120-100 мкм, до паперу з зернистістю абразива 20-14 мкм. При переході від паперу одного розміру зернистості до іншого необхідно очищувати зразок від абразива та змінювати напрям шліфування на 90о. При ручному шліфуванні шліфувальний папір кладуть на скло або іншу тверду, гладку підкладку.

Після цього зразки промивають водою та просушують. Для визначення дефектів шліф знежирюють та протравлюють.

Визначення ліквації сірки в сталі за макрошліфом проводиться методом Баумана. Полягає він у наступному.

Поверхню шліфа, добре відшліфовану на шліфуваль­ному папері з дрібним зерном, протирають ваткою, змоченою спиртом. Потім бромсрібний фотопапір на світлі змочують і витримують на протязі 5-10 хвилин у 5% -ному водному розчині сірчаної кислоти і злегка підсушують між листами фільтрувального паперу. Після цього фотопапір емульсійною стороною прикладають до приготовленої площини макрошліфа і обережно, недопускаючи зміщення паперу, погладжують гумовим валочком або рукою (в гумовій рукавиці). Через 3-5 хвилин фотопапір промивають у воді і фіксують у гіпосульфіті (20-30 хвилин) і сушать.

Сірка в сталі знаходиться у вигляді сульфіду MnS і рідше у FeS. Сульфіди на поверхні макрошліфа вступають у реакцію із сірчаною кислотою:

MnS + H2SO4 = MnSO4 + H2S

Сірководень, що виділився в результаті реакції, взаємодіє з кристаликами бро­мистого срібла на фотопапері.

2AgBr + H2S = AgS + 2HBr

Сірчисте срібло на фотопапері утворює темнобурі плями, які свідчать про місця розташування сірки в площині макрошліфа.

4 Завдання і порядок виконання роботи та оформлення звіту

4.1 Описати і замалювати зломи запропонованих зразків.

4.2 Під керівництвом викладача провести аналіз на характер розташування сірки в площині макрошліфа методом Баумана.

4.3 Наклеїти у звіт відбиток макрошліфа і описати його.

5 Контрольні запитання

5.1 Які задачі вирішує макроаналіз:

а) за зломом металу;

б) за макрошліфом?

5.2 Як здійснюється макроаналіз за методом Баумана?