Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
печень и поджелудочная1.docx
Скачиваний:
36
Добавлен:
21.11.2019
Размер:
1.46 Mб
Скачать

Гистология печени

Внутреннее строение печени взрослого человека подчинено архитектонике кровеносного и желчевыводящего русла.

Основной структурной единицей П. является печеночная долька. Клетки в ней образуют печеночные балки, расположенные по радиусам.

Между балками к центру дольки, где расположена центральная вена, тянутся синусоиды. На периферии дольки из желчных межклеточных капилляров формируются начальные желчные протоки (междольковые). Укрупняясь и сливаясь, они образуют в воротах П. печеночный проток, по которому желчь выходит из печени.

По Элиасу (Н. Elias, 1949), печеночная долька построена из системы печеночных пластинок, сходящихся по направлению к центру дольки и состоящих из одного ряда клеток. Между пластинками расположены лакуны, образующие лабиринт (рис. 5).

Рис. 1—3. Схемы строения печеночной дольки (рис. 3 по Чайлду): 1—ductuli biliferi; 2 — желчные капилляры; 3 — v. centralis; 4 — v. sublobularis; 5 — ductus interlobularis; б —a. interlobularis; 7 —v. interlobularis; 8 — междольковые лимфатические капилляры; 9 — пернваскулярное нервное сплетение; 10 — приток междольковых вен.

Из долек складываются области и сегменты печени, связанные с ветвями воротной вены и печеночных артерий. Различают передний и задний сегменты в веществе правой доли П., медиальный сегмент, занимающий территорию хвостатой и квадратной долей, и латеральный сегмент, соответствующий левой доле. Каждый из главных сегментов делится на два. П. построена из железистой эпителиальной ткани. Печеночные клетки разделяются желчными капиллярами (рис. 6).

Рис. 5. Микроскопическое строение дольки печени (по Элиасу); справа — портальное пространство для приводящей вены (1), ограниченное lamina limitans; видно отверстие (2) для афферентной венулы, ведущее в лабиринт; слева—лабиринт дольки (3), лакуны которого ограничены печеночными пластинками (laminae hepaticae); лакуны конвергированы к центральному пространству (для центральной вены).

Рис. 6. Внутридольковый желчный прекапилляр (1), дренирующий желчь из внутридольковых желчных капилляров (2) (по Элиасу).

Рис. 7. Решетчатые (аргирофильные) волокна внутри печеночной дольки (импрегнация серебром по Футу).

Ряды печеночных клеток (балки) отделены от синусоидов периваскулярными пространствами Диссе, в просвет которых обращены микроворсинки — отростки печеночных клеток. Другой клеточный элемент П.— звездчатые купферовские клетки; это ретикулярные клетки, выполняющие роль эндотелия внутридольковых синусоидов.
Прослойки фиброзной ткани между дольками П. и паравазальные соединительнотканные тракты составляют строму печени. Здесь много коллагеновых волокон, в то время как в строме дольки представлены главным образом аргирофильные ретикулиновые волокна (рис. 7).


Цитохимия и ультраструктура печеночных клеток

Печеночная клетка — гепатоцит — имеет полигональную форму и размер от 12 до 40 мк в диаметре в зависимости от функционального состояния.

В гепатоците выделяют синусоидальный и билиарный полюсы. Через первый происходит всасывание различных веществ из крови, через второй — секреция желчи и других субстанций в просветы межклеточных желчных канальцев.

Абсорбирующая и секреторная поверхности гепатоцита снабжены огромным количеством ультрамикроскопических выростов — микроворсинок, увеличивающих эти поверхности.

Гепатоцит ограничен двухконтурной белково-липидной плазматической мембраной, обладающей высокой ферментативной активностью—фосфатазной на билиарном полюсе и нуклеозидфосфатазной — на синусоидальном. Плазматическая мембрана гепатоцита содержит и фермент транслоказу, катализирующую активный транспорт ионов и молекул в клетку и из нее. Цитоплазма гепатоцита представлена мелкозернистым матриксом с небольшой электронной плотностью и системой мембран, которые составляют одно целое с плазматической и ядерной оболочками. Последняя также двухконтурна, состоит из белков и липидов и окружает шаровидное ядро с 1 — 2 ядрышками. В ядерной оболочке имеются поры диаметром 300—500 А. Некоторые гепатоциты (с возрастом их становится больше) имеют по два ядра. Двуядерные клетки, как правило, полиплоидны. Митозы встречаются редко.

К органеллам гепатоцита относятся эндоплазматическая сеть (гранулярная и агранулярная), митохондрии и аппарат (комплекс) Гольджи.

Гранулярная эндоплазматическая сеть (эргастоплазма) построена из парных параллельных липопротеиновых мембран, ограничивающих ультрамикроскопические канальцы. На наружной поверхности этих мембран располагаются рибосомы — рибонуклеопротеиновые гранулы диаметром 100—150 А. Агранулярная эндоплазматическая сеть построена так же, но рибосом не имеет.

Митохондрии в числе 2000—2500 встречаются в виде нитей, палочек и зерен величиной 0,5—1,5 мк и расположены около ядра и по периферии клетки. Митохондрии гепатоцита содержат огромное количество ферментов и являются энергетическими центрами клетки.

Ультрамикроскопически — митохондрии сложные липопротеиновые мембранные структуры, осуществляющие ферментативные превращения трикарбоновых кислот, сопряжение потока электронов с синтезом АТФ, перенос активных ионов во внутренние пространства митохондрий, а также синтез фосфолипидов и жирных кислот с длинной цепью.

Аппарат Гольджи представлен сетью перекладин разной толщины, которые располагаются в разные фазы секреторного цикла гепатоцита около ядра или вблизи желчных канальцев. Ультрамикроскопически он состоит из агранулярных липопротеиновых мембран, образующих трубочки, пузырьки, мешочки и щели. Аппарат Гольджи богат нуклеозидфосфатазами и другими ферментами. Лизосомы — перибилиарные тельца — пузырьки диаметром 0,4 мк и меньше, ограниченные одноконтурными мембранами, расположены около просветов желчных канальцев. Они содержат гидролазы и особенно богаты кислой фосфатазой. Непостоянные включения (гликоген, жир, пигменты, витамины) по своему составу и количеству варьируют.

Эндогенные пигменты—это гемосидерин, липофусцин, билирубин. Экзогенные пигменты могут присутствовать в цитоплазме гепатоцитов в виде солей различных металлов.

В 1833 г. Кирнан ввёл понятие о дольках печени как основе её архитектоники. Он описал чётко очерченные дольки пирамидальной формы, состо­ящие из центрально расположенной печёночной вены и периферически расположенных порталь­ных трактов, содержащих жёлчный проток, ветви воротной вены и печёночной артерии. Между эти­ми двумя системами располагаются балки гепато­цитов и содержащие кровь синусоиды.

С помощью стереоскопической реконструкции и сканирующей электронной микроскопии пока­зано, что печень человека состоит из столбиков гепатоцитов, отходящих от центральной вены, в правильном порядке чередующихся с синусоида­ми (рис. 1-9).

Ткань печени пронизана двумя системами кана­лов — портальными трактами и печёночными цент­ральными каналами, которые расположены таким образом, что не касаются друг друга; расстояние между ними составляет 0,5 мм (рис. 1-10). Эти си­стемы каналов расположены перпендикулярно друг другу. Синусоиды распределяются неравномерно, обычно проходя перпендикулярно линии, соеди­няющей центральные вены. Кровь из терминаль­ных ветвей воротной вены попадает в синусоиды; при этом направление кровотока определяется более высоким давлением в воротной вене по срав­нению с центральной.

Центральные печёночные каналы содержат истоки печёночной вены. Они окружены пограничной пла­стинкой печёночных клеток.

Портальные триады (синонимы: портальные тракты, глиссонова капсула) содержат терминаль­ные ветви воротной вены, печёночную артериолу и жёлчный проток с небольшим количеством круг­лых клеток и соединительной ткани (рис. 1-11). Они окружены пограничной пластинкой печёноч­ных клеток.

Анатомическое деление печени проводят по функциональному принципу. Согласно традицион­ным представлениям, структурная единица пече­ни состоит из центральной печёночной вены и ок­ружающих её гепатоцитов.

Однако Раппапорт [34] предлагает выделять ряд функциональных ацинусов, в центре каждого из которых лежит порталь­ная триада с терминальными ветвями портальной вены, печёночной артерии и жёлчного протока — зона 1 (рис. 1-12 и 1-13). Ацинусы расположены веерообразно, в основном перпендикулярно по от­ношению к терминальным печёночным венам со­седних ацинусов. Периферические, хуже кровоснабжаемые отделы ацинусов, прилежащие к тер­минальным печёночным венам (зона 3), наиболее страдают от повреждения (вирусного, токсическо­го или аноксического). В этой зоне локализуются мостовидные некрозы. Области, расположенные ближе к оси, образованной приносящими сосуда­ми и жёлчными протоками, более жизнеспособ­ны, и позднее в них может начаться регенерация печёночных клеток. Вклад каждой из зон ацинуса в регенерацию гепатоцитов зависит от локализа­ции повреждения [30, 34].

 

 

Рис. 1-9. Структура печени человека в норме.

 

 

 

Рис. 1-10. Гистологическое строение пе­чени в норме. Н — терминальная печё­ночная вена; Р — портальный тракт. Ок­раска гематоксилином и эозином, х60. См. также цветную иллюстрацию на с. 767.

 

 

Рис. 1-11. Портальный тракт в норме. А — печёночная артерия; Ж — жёлчный про­ток. В — портальная вена. Окраска гематоксилином и эозином. См. также цветную иллюстрацию на с. 767.

 Печёночные клетки (гепатоциты) составляют око­ло 60% массы печени. Они имеют полигональную форму и диаметр, равный приблизительно 30 мкм. Это одноядерные, реже многоядерные клетки, ко­торые делятся путём митоза. Продолжительность жизни гепатоцитов у экспериментальных животных составляет около 150 дней. Гепатоцит граничит с синусоидом и пространством Диссе, с жёлчным канальцем и соседними гепатоцитами. Базальной мембраны у гепатоцитов нет.

Синусоиды выстланы эндотелиальными клетка­ми.

К синусоидам относятся фагоцитирующие клет­ки ретикулоэндотелиальной системы (клетки Купфера),

звёздчатые клетки, также называемые жирозапасающими, клетками Ито или липоцитами.

В каждом миллиграмме нормальной печени че­ловека содержится приблизительно 202•103 клеток, из которых 171•103 являются паренхиматозными и 31•103 — литоральными (синусоидальные, в том числе клетки Купфера).

Пространством Диссе называется тканевое про­странство между гепатоцитами и синусоидальными эндотелиальными клетками. В перисинусоидальной соединительной ткани проходят лимфатические сосуды, которые на всём протяжении выстланы эндотелием. Тканевая жидкость просачивается через эндотелий в лимфатические сосуды.

 

 

Рис. 1-12. Функциональный ацинус (по Раппапорту). Зона 1 примыкает к входной (портальной) системе. Зона 3 примы­кает к выводящей (печёночной) системе.

 

 

Ветви печёночной артериолы образуют сплетение вокруг жёлчных протоков и впадают в синусои­дальную сеть на различных её уровнях. Они снаб­жают кровью структуры, расположенные в порталь­ных трактах. Прямых анастомозов между печёноч­ной артерией и воротной веной нет.

Экскреторная система печени начинается с жёлч­ных канальцев. Они не имеют стенок, а являются просто углублениями на контак­тирующих поверхностях гепатоцитов , которые покрыты микроворсинками. Плазмати­ческая мембрана пронизана микрофиламентами, образующими поддерживающий цитоскелет. Поверхность канальцев отделена от ос­тальной межклеточной поверхности соединитель­ными комплексами, состоящими из плотных кон­тактов, щелевых контактов и десмосом. Внутридоль­ковая сеть канальцев дренируется в тонкостенные терминальные жёлчные протоки или дуктулы (холангиолы, канальцы Геринга), выстланные куби­ческим эпителием. Они заканчиваются в более круп­ных (междольковых) жёлчных протоках, расположен­ных в портальных трактах. Последние разделяются на мелкие (диаметром менее 100 мкм), средние (±100 мкм) и крупные (более 100 мкм).

 

 

Рис. 1-13. Кровоснабжение простого ацинуса печени, зональное расположение кле­ток и микроциркуляторное периферичес­кое русло. Ацинус занимает примыкающие секторы соседних шестиугольных полей. Зоны 1, 2 и 3 соответственно представля­ют области, снабжаемые кровью с I, II и III степенью содержания кислорода и пи­тательных веществ. В центре этих зон находятся терминальные ветви принося­щих сосудов, жёлчных протоков, лимфа­тических сосудов и нервов (PS), а сами зоны простираются до треугольных пор­тальных полей, из которых выходят эти ветви. Зона 3 оказывается на периферии микроциркуляторного русла ацинуса, по­скольку её клетки так же удалены от аф­ферентных сосудов своего ацинуса, как и от сосудов соседнего ацинуса.

Перивенулярная область образуется наиболее уда­лёнными от портальной триады частями зоны 3 нескольких прилежащих ацину-сов. При повреждении этих зон повреж­дённая область приобретает вид морской звезды (затемнённая область вокруг тер­минальной печёночной венулы, располо­женной в её центре — ЦПВ). 1, 2, 3 — зоны микроциркуляции; Г, 2', 3' — зоны соседнего ацинуса .

 

Поверхность гепатоцитов ровная, за исключени­ем нескольких участков прикрепления (десмосом). Из них в просвет жёлчных канальцев выдаются рав­номерно расположенные микроворсинки одинако­вых размеров. На поверхности, обращённой к си­нусоиду, располагаются микроворсинки разной дли­ны и диаметра, проникающие в перисинусоидальное тканевое пространство. Наличие микроворсинок свидетельствует об активной секреции или абсорб­ции (в основном жидкости).

Ядро содержит дезоксирибонуклеопротеин. Пе­чень человека после полового созревания содер­жит тетраплоидные ядра, а в возрасте 20 лет — также октоплоидные ядра. Считается, что повы­шенная полиплоидность свидетельствует о пред­раковом состоянии.

В хроматиновой сети обнару­живаются одно или два ядрышка. Ядро имеет двой­ной контур и содержит поры, обеспечивающие обмен с окружающей цитоплазмой.

Митохондрии также имеют двойную мембрану, внутренний слой которой образует складки, или кристы. Внутри митохондрий протекает огромное количество процессов, в частности окислительное фосфорилирование, при которых происходит ос­вобождение энергии. В митохондриях содержится много ферментов, в том числе участвующих в цикле лимонной кислоты и бета-окислении жирных кис­лот. Энергия, высвобождающаяся в этих циклах, затем запасается в виде АДФ. Здесь протекает так­же синтез гема.

Шероховатая эндоплазматическая сеть (ШЭС) выглядит как ряд пластинок, на которых распола­гаются рибосомы. При световой микроскопии они окрашиваются базофильно. В них синтезируются специфические белки, особенно альбумин, белки свёртывающей системы крови и ферменты. При этом рибосомы могут сворачиваться в спираль, образуя полисомы. В ШЭС синтезируется Г-6-Фаза. Из свободных жирных кислот синтезируются три­глицериды, которые в виде липопротеидных комп­лексов секретируются путём экзоцитоза. ШЭС мо­жет участвовать в глюкогенезе.

 

 

Рис. 1-14. Органеллы гепатоцита.

 

 

Гладкая эндоплазматическая сеть (ГЭС) образует тубулы и везикулы. Она содержит микросомы и является местом конъюгации билирубина, деток­сикации многих лекарств и других токсичных ве­ществ (система Р450). Здесь синтезируются стерои­ды, в том числе холестерин и первичные жёлчные кислоты, которые конъюгируют с аминокислотами глицином и таурином. Индукторы ферментов, на­пример фенобарбитал, увеличивают размеры ГЭС.

Пероксисомы располагаются поблизости от ГЭС и гранул гликогена. Их функция неизвестна.

Лизосомы — плотные тельца, примыкающие к жёлчным канальцам. Они содержат гидролитичес­кие ферменты, при выделении которых клетка разрушается. Вероятно, они выполняют функцию внутриклеточной очистки от разрушенных орга­нелл, срок жизни которых уже истёк. В них от­кладываются ферритин, липофусцин, жёлчный пигмент и медь. Внутри них можно наблюдать пиноцитозные вакуоли. Некоторые плотные тель­ца, расположенные около канальцев, называются микротельцами.

Аппарат Гольджи состоит из системы цистерн и пузырьков, которые также лежат около канальцев. Его можно назвать «складом веществ», предназна­ченных для экскреции в жёлчь. В целом эта груп­па органелл — лизосомы, микротельца и аппарат Гольджи — обеспечивает секвестрирование любых веществ, которые были поглощены и должны быть удалены, секретрированы или сохранены для ме­таболических процессов в цитоплазме. Аппарат Гольджи, лизосомы и канальцы подвергаются осо­бенно выраженным изменениям при холестазе.

 

 

Рис. 1-15. Электронно-микроскопическая картина части нормального гепатоцита. Я — ядро; Яд — ядрышко; М — митохондрии; Ш — шероховатая эндоплазматическая сеть; Г — гранулы гликогена; mb— микроворсинки во внутри­клеточном пространстве; Л — лизосомы; МП — межкле­точное пространство.

 

 

Цитоплазма содержит гранулы гликогена, ли­пиды и тонкие волокна.

Цитоскелет, поддерживающий форму гепато­цита, состоит из микротрубочек, микрофиламен­тов и промежуточных филаментов [15]. Микро­трубочки содержат тубулин и обеспечивают пере­мещение органелл и везикул, а также секрецию белков плазмы. Микрофиламенты состоят из ак­тина, способны к сокращению и играют важную роль в обеспечении целостности и моторики ка­нальцев, тока жёлчи. Длинные ветвящиеся фила­менты, состоящие из цитокератинов, называют промежуточными филаментами [42]. Они соеди­няют плазматическую мембрану с перинуклеарной областью и обеспечивают стабильность и простран­ственную организацию гепатоцитов.