Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 8а.doc
Скачиваний:
3
Добавлен:
15.11.2019
Размер:
569.86 Кб
Скачать

Лекция 8а

Современные промышленные вентильные преобразователи для электропривода с асинхронными электродвигателями

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Конструкция

Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п. Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.

Короткозамкнутый ротор

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца. Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами. Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.

В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения n1[об/мин] которого связана с частотой сети 50Гц соотношением:

где р — число пар магнитных полюсов обмотки статора.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

.

Очевидно, что при двигательном режиме .

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим.

Режим электромагнитного тормоза

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза.

Характеристики двигателя

Механические характеристики.

Механическая характеристика двигателя представляет собой зависимость угловой скорости ротора от электромагнитного момента: ω2= f(Mэм) при U1= const. График характеристики изображен на рис.2

Рис.2.

Оценим механическую характеристику по показателям устойчивости, жесткости и линейности. Считается, что двигатель в разомкнутом приводе работает устойчиво, если после снятия возмущения он автоматически возвращается в исходную рабочую точку на механической характеристике. Поскольку механическая характеристика двигателя представляет собой зависимость угловой скорости ротора от электромагнитного момента: ω2= f(Mэм), а механической характеристикой нагрузки является зависимость статического момента сопротивления на валу двигателя от угловой скорости: Mст = f(ω2).    Теоретически установившийся режим работы двигателя возможен в точках А1 и А2, где Mэм=Mст.А. Пусть двигатель работает с нагрузкой Mст.А=const в точке А1 и появляется возмущение, приводящее к увеличению угловой скорости. Тогда двигатель создает вращающий момент, соответствующий точке А1', а нагрузка – момент сопротивления, соответствующий точке А1. При этом Mэм< Mст, в соответствии с уравнением равновесия моментов угловая скорость ω2 уменьшается и двигатель возвращается в точку А1. Возврат в точку А1 будет происходить и при отрицательном приращении скорости (точка А1'' ). Если двигатель работает c нагрузкой в точке А2, то при возмущении, приводящем к увеличению скорости, двигатель создает вращающий момент, соответствующий точке А2', а нагрузка – момент сопротивления, соответствующий точке А2. При этом Mэм>Mст и угловая скорость продолжает увеличиваться, двигатель уходит от точки А2. Возврата в точку А2 не происходит и при отрицательном приращении скорости (точка А2'' ). В этом случае скорость будет продолжать уменьшаться вплоть до остановки двигателя.    Следовательно в точке А1 двигатель работает устойчиво, а в точке А2 – неустойчиво. В общем случае, признаком устойчивой работы двигателя является неравенство

(dMэм /dω2) < (dMст /dω2)  

Рабочие характеристики.    Рабочие характеристики асинхронного двигателя - это зависимости угловой скорости ротора ω2, полезного момента М2, КПД η, коэффициента мощности cos φ1(φ1 - сдвиг по фазе между U1 и I1) и тока статора I1 от полезной мощности Р2 при U1 = Uном и f1 = fном (рис. 3).

Рис.3

Рабочие характеристики могут быть либо сняты экспериментально, либо рассчитаны с использованием схемы замещения. При переходе от режима х.х. (двигатель не нагружен) к режиму номинальной нагрузки угловая скорость ротора снижается незначительно, т.к. ω2=(1 - s)ω1, а Sном, как отмечалось, составляет единицы процентов. Соответственно, полезный момент М2= P2 возрастает по закону, близкому к линейному. Изменение тока статора определяется реакцией ротора; относительно большое значение тока при холостом ходе объясняется наличием воздушного зазора. Ток х.х. в основном индуктивный, и соответственно низок cos φ10 – порядка 0,1 – 0,2. По мере роста нагрузки возрастает потребляемая активная электрическая мощность и cos φ1 растет – его максимальное значение достигает 0,7 - 0,9. Ток сохраняет активно-индуктивный характер ( φ1>0 ) и питающая сеть загружается реактивным током. КПД двигателя η= Р21, где Р1 – активная электрическая мощность, потребляемая двигателем. При симметричном питании Р1 = m1U1I1cos φ1, где U1, I1 – фазные напряжение и ток. Зависимость КПД от мощности Р2= Р1 -Δpэ -Δpм -Δpмех имеет такой же вид, как и у трансформатора, т.к. в двигателе потери также подразделяются на постоянные и переменные. Для машин малой и средней мощности максимальное значение КПД η = 0,7 – 0,9, при этом меньшие значения относятся к двигателям меньшей мощности, у которых относительно больше активное сопротивление обмоток.