Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистическая физика.doc
Скачиваний:
3
Добавлен:
14.11.2019
Размер:
331.26 Кб
Скачать

Распределение Максвелла

Закон распределения по скоростям молекул газа, находящегося в термодинамическом равновесии, был найден Максвеллом (1859 г.).

Следуя Максвеллу, представим себе пространство скоростей с прямоугольными координатными осями, по которым будем откладывать значения проекций скорости vx , vy , vz отдельных молекул. Тогда скорости каждой молекулы будет соответствовать точка в этом пространстве - конец вектора v. Из-за столкновений молекул положения точек будут стремительно меняться (при нормальных условиях каждая молекула газа испытывает порядка 109 столкновений в секунду), но их распределение в целом будет оставаться неизменным, поскольку макросистема находится в термодинамическом (статистическом) равновесии. Вследствие равноправности всех направлений движения расположение точек относительно начала координат будет сферически симметричным. Поэтому плотность точек может зависеть только от модуля скорости v.

Пусть макросистема (газ) содержит N молекул. Выделим в некоторой точке - конце вектора v - малый объем dvxdvydvz (рисунок, где ось z направлена на нас). Относительное число точек (молекул) в этом объеме dN / N, или другими словами, вероятность dP того, что скорость молекулы, т.е. конец вектора v, попадет в этот объем, можно записать так:

где f(v) имеет смысл объемной плотности вероятности.

Вероятность же того, что молекула (точка) будет иметь проекции скорости в интервале (vx , vx + dvx), есть

где (vx) - функция распределения по vx. Последнее выражение - это по существу интеграл от предыдущего по vy и vz , т.е. относительное число молекул в тонком плоском слое от vx до vx + dvx.

Вероятности того, что молекула имеет проекции скорости в интервалах (vx , vx + dvx), (vу , vу + dvу) и (vz , vz + dvz), являются независимыми (это было строго доказано), поэтому в соответствии с теоремой об умножении вероятностей независимых событий можно записать

Из соображения равноправия осей vx , vy , vz ясно, что функции должны одинаковым образом зависеть от соответствующих проекций скорости.

Объемную плотность вероятности можно выразить через плотности вероятностей для проекций скорости:

f(v) = (vx)(vy)(vz)

Возьмем логарифм от обеих частей последнего выражения:

lnf(v) = ln(vx) + ln(vy) + ln(vz)

Дифференцируем последнее выражение по vx:

Учитывая, что , для производной можно получить выражение:

.

Подставляем значение производной в уравнение:

Правая, следовательно, и левая части последнего уравнения не зависят от vy и vz. Значит, они не зависят от vx, поскольку vx, vy, vz входят в функцию f(v) симметрично. Следовательно, правую часть уравнения можно приравнять к некоторой неизвестной пока константе, которую обозначим (). Отрицательный знак введен, с учетом дальнейшего, для того, чтобы величина оказалась положительной. Получим дифференциальное уравнение для функции (vx):

Разделим переменные (частную производную заменим на полную, поскольку они эквивалентны в данном случае):

В результате интегрирования получаем:

, где А - неизвестная константа интегрирования.

Очевидно, для (vy) и (vz) можно получить такие же выражения. Для f(v) получим:

Из последнего выражения следует положительный знак константы , поскольку иначе наблюдался бы неограниченный рост функции f(v).

Константу А можно определить из условия нормировки:

Интеграл в последнем выражении известен в математике под названием интеграла Пуассона, его величина равна . Отсюда: .

Осталось определить величину константы . Это возможно путем использования полученной ранее формулы для среднего значения кинетической энергии поступательного движения молекул:

Поскольку движения молекулы во всех направлениях равноправны, можем записать:

.

Имея полученное выше выражение для функции распределения (vx), которое содержит неизвестную константу , можно выразить среднее значение , приравнять его к полученному выше значению kT/m и определить таким способом константу :

Известное из математики значение интеграла равно , отсюда .

Окончательные результаты таковы:

График функции (vx) изображен на рисунке. Он совпадает с гауссовой кривой погрешностей. Площадь тонированной полоски - это вероятность того, что проекция скорости лежит в интервале (vx , vx + dvx). Функция нормирована на единицу, т.е. площадь под кривой (vx)