Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция_8(погрешности).docx
Скачиваний:
27
Добавлен:
08.11.2019
Размер:
480.52 Кб
Скачать

§12. Метод простой итерации для решения алгебраических и трансцендентных уравнений.

ТЕОРЕМА 1. (Принцип Банаха сжимающихся отображений).

Пусть R – полное метрическое пространство. Если сжатие, то для него существует в R единственная неподвижная точка, к которой сходится итерационный процесс.

, где - произвольный.

План доказательства.

  1. – фундаментальная

(*)

q – коэффициент сжатия

.

  1. Т.к. R – полное метрическое пространство, то в нем всякая фундаментальная последовательность сходится.

– сходится, , причем , т.е. – неподвижная точка.

  1. – единственна.

ЧТД.

- последовательность приближения к решению уравнения

Метод – метод простой итерации.

Если в (*) зафиксировать, а , то

– оценка погрешности, оценка скорости сходимости.

со скоростью геометрической прогрессии.

– линейная скорость сходимости.

Метод простой итерации имеет линейную скорость сходимости.

Пусть (2), – вещественная функция.

Необходимо привести к виду .

, - знакопостоянная непрерывная функция.

Условие сходимости для данного метода:

ТЕОРЕМА 2.

Пусть выполняются условия:

  1. Функция – определена и непрерывна на отрезке и на этом отрезке удовлетворяет условию Липшица: ;

  2. Для начального приближения выполняется условие ;

  3. Числа связаны условием .

Тогда уравнение имеет единственное решение в области , к которому сходится итерационный процесс со скоростью сходимости .

Теорема доказывается аналогично теореме Банаха с точностью до обозначений.

Замечание. Условие Липшица применять трудно, вместо него применяют другое условие:

на отрезке

.

Метод итерация дает бесконечную последовательность приближений, поэтому используют следующие правила остановки:

  1. По соседним приближениям

задается уровень останова и момент останова n задается формулой

  1. По невязке

задается уровень и момент останова n итерационной процедуры задается неравенствами

Метод простой итерации удобен в использовании, так как он легко программируется на ЭВМ.

Недостаток: невысокая скорость сходимости, т.е. линейная.

§13. Метод Ньютона. Решение уравнений с одной переменной.

Пусть требуется решить уравнение (1), где функция – дважды непрерывно-дифференцируема на ; на и и .

Из этих условий вытекает, что на функция имеет только один корень.

Прежде, чем использовать итерации, необходимо (1) привести к виду .

.

Функция непрерывная в окрестности корня уравнения (1). Следовательно, уравнение (1) и уравнение (2) будут иметь один и тот же корень .

В качестве выберем , тогда (3)

Выберем начальное приближение достаточно близкое к . Остальные приближения получаются по формуле:

(4)

Метод, определенный (4), называется методом Ньютона.

Докажем, что метод Ньютона сходится и получим его оценку погрешности.

Если дано, что , где – символ Ландау:

  • если k=1, то скорость сходимости линейная;

  • если k=2, то скорость – квадратичная;

  • если k=3, то скорость – кубическая;

  • если k>1, то сходимость метода сверхлинейная.

Докажем, что (4) сходится.

Для этого покажем, что отображение – сжатие, где .

.

При получим

.

По непрерывности функции на существует такая окрестность точки , что для , , а этом сжатие.

Поэтому к отображению можно применить принцип сжатыхотображений.

Если выбрать , то будет сходиться к точному решению уравнения (1)., т.е. .

Заметим, что метод (4) будет сходиться, если начальное приближение будем выбирать из окрестности

, .

Докажем, что метод Ньютона сходится.

Определим скорость сходимости метода Ньютона. Для этого разложим в ряд Тейлора в точке .

.

При имеем . Поэтому

Выразим (5)

Обозначим через ,

(6)

, скорость сходимости метода Ньютона квадратичная, .

Потребуем, чтобы начальное условие выбиралось из условия

(7)

Тогда из (6) получим

- оценка погрешности.

Метод Ньютона имеет квадратичную скорость сходимости. Это означает, что при переходе от одной итерации к другой количество верных знаков удваивается в последующем приближении.

Достоинство: высокая скорость сходимости, легко программируется на ЭВМ.

Недостатки: узкая область сходимости.

Если будем решать операторное уравнение , то на каждом шаге необходимо находить значение обратного оператора .

Геометрический смысл метода Ньютона.

П усть требуется решить уравнение и единственный корень этого уравнения находится на .

В точке проведем касательную к графику функции , уравнение касательной: .

Если , то

– первое приближение к уравнения (1) по методу Ньютона.

Возьмем и проведем касательную в этой точке. Получим .

Если , то

– второе приближение к уравнения (1) по методу Ньютона.

И так далее. Отсюда метод Ньютона называют методом касательных.