Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ.doc
Скачиваний:
14
Добавлен:
27.09.2019
Размер:
10.91 Mб
Скачать

Паровые турбины

Свежий пар от парогенератора, пройдя через пароперегреватель, поступает в паровую турбину, где расширяется, производя работу. После цилиндра высокого давления турбины (ЦВД) пар на пути в конденсатор проходит через промежуточный перегреватель.

Расширение пара в турбине осуществляется в неподвижных криволинейных каналах - соплах, образующих сопловую решетку. Поток пара в такой решетке ускоряется и приобретает необходимое направление для входа в каналы рабочей решетки, образованной рабочими лопатками. Рабочие лопатки укреплены на ободе дисков ротора турбины. Протекая по криволинейным каналам между рабочими лопатками, струи пара создают усилия, вращающие ротор. В сопловых решетках происходит преобразование потенциальной энергии пара в кинетическую, а на рабочих решетках кинетическая энергия преобразуется в механическую энергию. Расширение пара в сопловых решетках сопровождается падением его давления, температуры и теплосодержания и увеличением объема, и проходные сечения проточной части турбины возрастают от ступени к ступени. Например, в 12 ступенях цилиндра высокого давления (ЦВД) турбины 300 МВт ЛМЗ пар расширяется при номинальной нагрузке от 235,2 до 39,2 бар, охлаждаясь с 560 до 315 °С, причем удельный объем пара увеличивается с 0,0 14 до 0,062 м3/кг, т. е. в 4,4 раза. Значительно больше увеличивается объем пара при последующем его расширении в 12 ступенях части среднего давления (ЧСД) и затем в 5 ступенях - части низкого давления (ЧНД).

Описанный процесс расширения пара - только в неподвижных сопловых решетках — характерен для турбин Лаваля - турбин активного типа.

Густав де Лавалъ (1845—1913) шведский инженер. Построил первую паровую турбину активного типа, применив расширяющиеся сопла, поверхностный конденсатор и другие элементы, используемые и в современном турбостроении.

Современные активные турбины имеют то основное отличие от турбин Лаваля, что пар расширяется не в одной ступени, а в ряде ступеней, расположенных друг за другом. Для обеспечения высокого к.п.д. турбинной ступени необходимо выдержать определенное соотношение между окружной скоростью движущихся лопаток и абсолютной скоростью истечения пара из сопла. В многоступенчатой турбине удается обеспечить это наивыгоднейшее соотношение при любых параметрах свежего пара и умеренной частоте вращения ротора (например, 3000 об/мин у паровых турбин для привода электрических генераторов на КЭС). Турбины Лаваля уже при низком давлении свежего пара имели до 32000 об/мин и между турбиной и приводной машиной приходилось применять редукторную передачу.

Турбины на КЭС работают с постоянной частотой вращения, обеспечиваемой автоматическим регулированием. При изменении нагрузки генератора приходится изменять расход протекающего через турбину пара, что осуществляется системой парораспределения турбины.

Сопловое парораспределение преследует цель минимального мятия пара при частичных нагрузках; оно применено во всех отечественных конденсационных турбинах большой мощности, кроме машины 1 200 МВт, для которой расчетный выигрыш в удельном расходе тепла не оправдывается усложнением и удорожанием конструкции. При сопловом парораспределении предусматривают несколько регулирующих клапанов, каждый из которых обслуживает свою часть сопловой решетки.первой — регулирующей ступени ЦВД.

За последние 25 лет у турбин, изготовленных ЛМЗ, увеличили длину лопатки последней ступени с 665 до 960 мм (рис. 4), торцевую площадь одного выхлопа с 4,2 до 7,48 м2 и число выхлопов — с одного (у турбины 50 МВт) до восьми (у двухвальной турбины 800 МВт). Применение двухвальной конструкции было вынужденным, т.к. в то время отсутствовал электрический генератор мощностью 800 МВт. Позднее была изготовлена одновальная турбина той же мощности, у которой число выхлопов уменьшено до шести, но с небольшим понижением к.п.д. По всем конструктивным показателям последняя турбина, естественно, превосходит двухвальную.

Для следующего поколения турбин ЛМЗ разработал лопатку длиной 1 200 мм, обеспечивающую площадь одного выхлопа 10,9 м2 и позволившую создать одновальную турбину мощностью 1 200 МВт при шести выхлопах. Прочность легированных сталей оказывается недостаточной для таких длинных лопаток и их изготовляют из титановых сплавов. Заметим, что использование лопаток 1 200 мм позволит сократить число цилиндров низкого давления (ЦНД) у турбины 800 МВт до двух с четырьмя выхлопами.

Конденсационные турбины мощных энергоблоков изготовляет также ХТГЗ. Эти турбины мощностью 300 и 500 МВт имеют лопатки последней ступени длиной 1050 мм.

Поскольку работоспособность пара падает по мере снижения его давления, мощность, развиваемая в ЦИД, оказывается наименьшей. Например, в одновальной турбине 800 МВт мощности отдельных цилиндров равны: ЦВД — 266, ЦСД — 304, ЦИД — 77Х3 МВт.

С увеличением числа и площади выхлопов и числа цилиндров турбины растет и ее длина. Так, турбина ЛМЗ мощностью 300 МВт имеет три цилиндра и общую длину 21,3 м (рис.5), а одновальная турбина 800 МВт — пять цилиндров при длине 39,75 м и, наконец, турбина 1 200 МВт при том же числе цилиндров имеет длину 45,6 м. У турбины 300 МВт в среднем цилиндре располагается часть среднего давления (после промежуточного перегрева) и одна из трех частей низкого давления. У более мощных одновальных турбин.

рис. 4. Конструктивные схемы паровых турбин ЛМЗ. а—турбина 300 МВт б—турбина800МВт в— лопатка последней ступени длиной 960 мм.