Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫШКА ШПОРЫ.docx
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
732.65 Кб
Скачать

36. Метод вариации произвольных постоянных

(метод Лагранжа) решения ЛНДУ.

Для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Согласно вышеизложенному, общее решение линейного однородного уравнения:

, (8.1)

где – линейно независимые на некотором интервале X решения лоду, а - произвольные постоянные. Будем искать частное решение лнду в форме (8.1), считая, что – не постоянные, а некоторые, пока неизвестные, функции от :

. (8.2)

Продифференцируем равенство (8.2):

. (8.3)

Подберем функции и так, чтобы выполнялось равенство: . Тогда вместо (8.3) будем иметь:

. (8.4)

Продифференцируем это выражение еще раз по . В результате получим:

. (8.5)

Подставим (8.2), (8.4), (8.5) в лнду 2-го порядка f(x):

f(x)

или

f(x). (8.6)

Так как - решения лоду , то последнее равенство (8.6) принимает вид: f(x).

Таким образом, функция (8.2) будет решением лнду в том случае, если функции и удовлетворяют системе уравнений:

(8.7)

Так как определителем этой системы является определитель Вронского для двух линейно независимых на X решений соответствующего лоду, то он не обращается в ноль ни в одной точке интервала X. Следовательно, решая систему (8.7), найдем и : и . Интегрируя, получим:

, ,

где - произвольные постоянные.

Возвращаясь в равенство (8.2), получим общее решение неоднородного уравнения:

37.Линейные однородные уравнения с постоянными коэффициентами. Это уравнение имеет вид:

, (2.1)

где - постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определенную при всех и состоящую из степенных, показательных и тригонометрических функций. Соответствующее ей общее решение:

определено в области , т.е. во всем пространстве .

Построение фундаментальной системы решений лоду делается методом Эйлера.Подставляя эту функцию в уравнение (2.1), после сокращения на получим характеристическое уравнение:

Его корни называются характеристическими числами уравнения (2.1). Различают три случая.

  1. Все корни характеристического уравнения различны и вещественны. Обозначим их через . Тогда фундаментальной системой решений будут: , а общее решение имеет вид: .

  2. Все корни характеристического уравнения различны, но среди них имеются комплексные. Записав линейно независимые частные решения, соответствующие другим сопряженным парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).

  3. Среди корней характеристического уравнения имеются кратные.

Записав линейно независимые частные решения указанного выше вида, соответствующие всем простым и кратным вещественным корням, а также сопряженным парам простых и кратных комплексных корней, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).