Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика епт.docx
Скачиваний:
11
Добавлен:
25.09.2019
Размер:
114.02 Кб
Скачать
  1. Колебательное движение и его параметры. Гармонические колебания

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. д. Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной

Колебания называются свободными, если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на систему, которая совершает колебания. Простейшим типом колебаний являютсягармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Исследование гармонических колебаний важно по двум причинам: 1) колебания, которые встречаются в природе и технике, часто имеют близкий к гармоническому характер ; 2) различные периодические процессы (процессы, которые повторяются через равные промежутки времени) можно представить как суперпозицию (наложение) гармонических колебаний. Гармонические колебания некоторой величины s описываются уравнением вида   где ω0 — круговая (циклическая) частота, А - максимальное значение колеблющейся величины, называемое амплитудой колебания, φ — начальная фаза колебания в момент времени t=0, (ω0t+φ) - фаза колебания в момент времени t. Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, во время которого за 1 с совершается один цикл процесса.  Из выражения непосредственно вытекает дифференциальное уравнение гармонических колебаний  Гармонические колебания графически изображаются методом вращающегося вектора амплитуды, или методом векторных диаграмм. В физике часто используется другой метод, отличающийся от метода вращающегося вектора амплитуды лишь по форме. В данном методе колеблющуюся величину представляют комплексным числом. Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам: Очень часто малые колебания, как свободные, так и вынужденные, которые происходят в реальных системах, можно считать имеющими форму гармонических колебаний или очень близкую к ней. Широкий класс периодических функций может быть разложен на сумму тригонометрических компонентов. Другими словами, любое колебание может быть представлено как сумма гармонических колебаний. Для широкого класса систем откликом на гармоническое воздействие является гармоническое колебание (свойство линейности), при этом связь воздействия и отклика является устойчивой характеристикой системы. С учётом предыдущего свойства это позволяет исследовать прохождение колебаний произвольной формы через системы. Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Превращения энергии при свободных механических колебаниях При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли. Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д. Гармонические колебания Гармонические колебания — колебания, происходящие под действием силы, пропорциональной смещению. Происходят по закону синуса и косинуса. x = xmaxcos(ωt+φo), φ = ωt+φo, где x — смещение тела от положения равновесия, x — амплитуда колебаний, ω — циклическая частота колебаний, φo — начальная фаза, t — время, φ — фаза гармонического колебания. Скорость и ускорение при гармонических колебаниях.

V(t) = Δx/Δt = x,(t) (если φo=0) V = x,(t) = xmaxωcos (ωt+π/2) Vmax = xmaxω a = V,(t) = x,,(t) a = xmaxω2sin (ωt) amax = xmaxω2

В физике мы имеем дело с волнами различной природы: механическими, электромагнитными и т.д. Несмотря на отличия, эти волны имеют много общих черт. Волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называются поперечными.  Если взаимосвязь между частицами среды осуществляется силами упругости, возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими. К ним относятся звуковые, ультразвуковые, сейсмические и др. волны. На первой анимации изображён процесс распространения  продольной упругой волны в решётке, состоящей из шариков, соединённых упругими пружинками. Каждый шарик колеблется по гармоническому закону в продольном направлении, совпадающем с направлением распространения волны. Амплитуда каждого шарика одинакова и равна A, а фаза колебаний линейно растёт с увеличением номера шарика на  В поперечной волне колебания происходят в направлении, перпендикулярном направлению распространения волны. Как и в случае продольных волн амплитуды колебаний всех шариков одинаковы, а фаза линейно изменяется от шарика к шарику

Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракцииОгюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.

Принцип Гюйгенса — Френеля формулируется следующим образом: Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн

Закон отражения волн — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальнойповерхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности. Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен (n2-n1)2/(n2+n1)2. В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела он составляет 4%.

Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальнымиорганами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц[1]. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением. Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q). Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. Звуковым волнам присуще явление интерференции, т.е. усиление колебаний в одних точках пространства и ослабление колебаний в других точках в результате наложения двух или нескольких звуковых волн, приходящих в эти точки пространства. Явление интерференции во времени базируется на известном принципе суперпозиции волн, смысл которого сводится к следующему: если в среде одновременно распространяется система n различных волн, то каждая из волн распространяется независимо от других. При этом результирующие скорость, смещение, ускорение каждой частицы среды равны векторным суммам соответствующих величин, обусловленных каждой из волн порознь. Дифрация звука (ДЗ) – отклонение распространения звука от законов геометрической акустики, обусловленное его волновой природой. Результаты ДЗ – расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, малых по сравнению с длиной звуковой волны   и.т.п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях в среде, на неоднородностях самой среды и ее границ, называются рассеянными полями.

Дифракция анализируется с помощью принципа Гюйгенса. Для выяснения его рассмотрим известную нам форму волнового фронта в какой-либо момент времени t. Каждую точку начального волнового фронта можно рассматривать как источник элементарной сферической волны, распространяющейся за промежуток времени Dt на расстояние vDt. Огибающая всех этих элементарных сферических волновых фронтов и будет волновым фронтом в момент времени t+Dt. Принцип Гюйгенса позволяет определять форму волнового фронта на протяжении всего процесса распространения. Из него следует также, что плоские и сферические волны сохраняют свою геометрию в процессе распространения при условии, что среда однородна. Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне. Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твердом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определенных объемов среды, причем расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.  Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению: V = U sin (2ft + G), где V - величина колебательной скорости; U - амплитуда колебательной скорости; f - частота ультразвука; t - время; G - разность фаз между колебательной скоростью частиц и переменным акустическим давлением.