Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы с 1-60.doc
Скачиваний:
22
Добавлен:
21.09.2019
Размер:
6.15 Mб
Скачать
  1. Логарифмическая функция

Логарифмической функцией называется функция вида , при .

Логарифмическая функция является функцией, обратной показательной.

Свойства логарифмической функции:

1). Область определения функции:

2). Область значений: .

3). Функция не является ни четной, ни нечетной.

4). Функция непрерывна и не имеет ни наибольшего, ни наименьшего значений.

5). При функция строго возрастает, а при строго убывает.

6). При функция выпукла вверх, а при выпукла вниз.

П ример логарифмических функций и :

  1. Предел функции.

Пусть функция определена в некоторой окрестности точки , кроме, быть может, самой точки .

Обозначение: .

Запишем это определение коротко:

.

К вантор всеобщности читается: «для всех». Квантор существования заменяет слово «существует». Запись означает, что «из следует ». А указывает на эквивалентность высказываний и , т. е. «из следует и из следует ».

Геометрический смысл предела функции поможет понять рис. 13.1. Для любой -окрестности точки (ось ) найдется такая -окрестность точки (ось ), что для всех точек этой окрестности, кроме, быть может, , соответствующие значения функции лежат в -окрестности точки . Иначе говоря, точки графика функции лежат внутри полосы шириной , ограниченной прямыми , . Величина зависит от выбора , поэтому пишут .

Пусть функция определена на всей числовой оси.

Обозначение: .

Запишем определение предела функции коротко:

.

Г еометрический смысл этого определения: для любой ‑окрестности точки (рис. 13.2) найдется такая окрестность бесконечно удаленной точки (ось ),

что для всех точек этой окрестности соответствующие значения функции лежат в -окрестности точки , т. е. точки графика функции лежат внутри полосы шириной , ограниченной прямыми , .

Если рассматривается поведение функции при или при , то пишут и, соответственно, .

Пусть определена в некоторой окрестности точки . Определение. Функция называется бесконечно большой при (включая бесконечность), если .

Запишем определение коротко:

.

Г еометрический смысл определения: для любой окрестности бесконечно удаленной точки найдется такая -окрестность точки , что для всех точек этой окрестности, кроме точки , соответствующие значения функции лежат в окрестности , т. е. точки графика лежат выше прямой и ниже прямой (рис. 13.3).

Если функция стремится к бесконечности при , принимая только положительные значения, то пишут , а если, принимая лишь отрицательные значения, то пишут .

Пусть функция определена на всей числовой оси.

Обозначение: .

Коротко определение:

Геометрический смысл определения: для любой окрестности бесконечно удаленной точки оси найдется такая окрестность бесконечно удаленной точки оси , что как только точка попадает в эту окрестность, так сразу соответствующие значения функции лежат в окрестности , т. е. точки графика лежат выше прямой и ниже прямой (рис.13.4).