Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матрицы и линейные операции над ними.docx
Скачиваний:
16
Добавлен:
21.09.2019
Размер:
703.87 Кб
Скачать

68.Выражение скалярного произведения через координаты перемножаемых векторов

Определение. Матрицей Грама системы векторов

(6.9)

евклидова пространства называется матрица , где .

Нетрудно показать, что в случае действительного пространства матрица Г симметричная и все ее главные миноры положительны. Если же пространство комплексное, то , т. е.

Выберем в какой-либо базис

(6.11)

и обозначим его матрицу Грама. Выберем также произвольные векторы пространства . Тогда

координатная форма записи скалярного произведения в комплексном евклидовом пространстве;

координатная форма записи скалярного произведения в действительном пространстве. Так как , то

матричная форма записи скалярного произведения в комплексном пространстве;

в действительном пространстве. В ортонормированном базисе скалярное произведение вычисляется так:

координатная форма записи скалярного произведения в комплексном евклидовом пространстве;

в действительном пространстве; – (6.12)

матричная форма записи скалярного произведения в комплексном пространстве;

в действительном пространстве.

73-74.Самосопряженные линейные операторы

Определение. Линейный оператор называется самосопряженным, если он сопряжен самому себе ( ), т. е., если

: . (7.4)

В комплексных евклидовых пространствах самосопряженные линейные операторы называются эрмитовыми, а в действительных – симметричными.

Теорема 7.3. Для того чтобы линейный оператор комплексного евклидова пространства в себя был эрмитовым, необходимо и достаточно, чтобы его матрица в некотором, а значит, и в любом ортонормированном базисе пространства была эрмитовой.

Для того чтобы линейный оператор действительного евклидова пространства в себя был симметричным, необходимо и достаточно, чтобы его матрица в некотором, а значит, и в любом ортонормированном базисе пространства была симметричной.

Теорема 7.4. Все собственные значения эрмитова оператора действительны.

Следствия. 1. Все характеристические числа эрмитовой матрицы действительны.

2. Все характеристические числа симметричной матрицы действительны.

3. Любой симметричный оператор имеет, по крайней мере, одно собственное значение.

Теорема 7.5. Собственные векторы самосопряженного линейного оператора с различными собственными значениями взаимно ортогональны.

Теорема 7.6. Для любого самосопряжённого оператора в пространстве существует ортонормированный базис, состоящий из собственных векторов оператора .

77-79.Изометрии

Определение. Линейный оператор f евклидова пространства Е в себя называется изометрией, если он сохраняет скалярное произведение, т. е. если

(7.18)

Изометрии в комплексном евклидовом пространстве называются унитарными операторами, а в действительном – ортогональными.

Теорема 7.10. Если  – собственное значение изометрии, то ||=1.

Замечание. Собственные значения ортогонального оператора равны 1 или –1. Ортогональный оператор в пространстве четной размерности может и не иметь собственных значений, но в пространстве нечетной размерности имеет хотя бы одно.

Теорема 7.11. Для того чтобы линейный оператор был изометрией, необходимо и достаточно, чтобы он сохранял длины векторов.

Теорема 7.12. Изометрия любой ортонормированный базис пространства переводит в ортонормированный базис. Обратно, если линейный оператор некоторый ортонормированный базис пространства переводит в ортонормированный базис, то f – изометрия.

81.Ортогональные операторы на евклидовой плоскости

Выберем на евклидовой плоскости какой-либо ортонормированный базис . Если А – матрица ортогонального оператора в этом базисе, то она ортогональна. Значит, . Найдем характеристический многочлен матрицы А:

.

Рассмотрим сначала случай, когда . Тогда характеристическое уравнение имеет вид . Это уравнение имеет два различных действительных корня. Значит, ортогональный оператор имеет два различных собственных значения: и . В таком случае в существует ортонормированный базис , состоящий из собственных векторов оператора , в котором матрица оператора имеет диагональный вид:

.

Линейный оператор с этой матрицей, как мы знаем, есть не что иное, как оператор симметрии относительно оси, направление которой задается вектором .

Пусть теперь . Определим в этом случае элементы матрицы А, учитывая, что она ортогональная, т. е. что . Пусть

.

Тогда

,

откуда получаем систему для определения элементов матрицы:

(7.24)

Из первых двух уравнений системы (7.24) видно, что можно положить , где и – некоторые углы, причем (так как нам важно знать не сами углы, а значения их синусов и косинусов). Последние два уравнения этой системы определяют соотношения между углами и :

.

Значит, матрица А выглядит так:

.

Как мы уже знаем, это матрица оператора поворота плоскости на угол вокруг начала координат. В частности, если , то , т. е. получаем тождественный оператор. Если же , то . Этой матрице соответствует оператор симметрии относительно начала координат.

Таким образом, ортогональные операторы на евклидовой плоскости – это тождественный оператор, симметрия относительно начала координат или относительно некоторой оси, либо поворот плоскости вокруг начала координат.