Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ(почти) ответы на електооборудование.docx
Скачиваний:
20
Добавлен:
17.09.2019
Размер:
1.48 Mб
Скачать

5.1 Принцип действия генератора постоянного тока

Генераторами называют электрические  машины,  преобразующие  механическую энергию  в  электрическую. Принцип действия электрического генератора основан   на    использовании явления электромагнитной    индукции, которое состоит в следующем. Если в магнитном поле постоянного  магнита перемещать проводник так, чтобы он пересекал магнитный поток, то  в проводнике  возникнет   электродвижущая сила (э.д.с),  называемая э.д.с индукции (Индукция   от   латинского   слова   inductio   —   наведение, побуждение) , или индуктированной э.д.с. Электродвижущая  сила  возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит.  Явление возникновения индуктированной э.д.с. в проводнике  называется электромагнитной  индукцией. Если  проводник,  в  котором  индуктируется  э.д.с,  включить в  замкнутую электрическую цепь,  то  под действием э.д.с. по цепи потечет ток, называемый индуктированным током. Опытным путем установлено, что величина индуктированной э.д.с., возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуктированная э.д.с. возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий э.д.с. в нем не индуктируется. Направление индуктированной э.д.с. и тока проще всего определить по правилу правой руки (рис. 131): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуктированной э.д.с. и направление тока в проводнике. Магнитные силовые линии направлены от северного   полюса  магнита  к  южному.

Рис. 131. Определение направления индуктированной э.д.с. по правилу правой руки

Имея общее представление об электромагнитной индукции, рассмотрим принцип действия простейшего генератора (рис. 132). Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полуколец, называют коллектором, а каждое полукольцо — пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда э.д.с, индуктируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение.

Рис. 132. Простейший генератор постоянного тока

С помощью коллектора переменная э.д.с, индуктируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.

5.2

Схема простейшего вибрационного регулятора напряжения.

Вибрационный регулятор, регулирующее устройство, исполнительный элемент которого находится в режиме непрерывных колебаний (вибраций) с периодом, значительно меньшимпостоянной времени объекта регулирования. Системы с В. р. различаются по характеру колебательного режима исполнительного элемента. В простейшем случае — это автоколебательный режим самой системы регулирования. В. р. просты по конструкции, компактны и широко применяются в установках, в которых допускаются небольшие колебания около среднего значения регулируемой величины.

Наиболее распространённый В. р. — регулятор напряжения, содержащий электромагнитное реле с большим коэффициентом возврата (рис.). Катушка реле Р включена на напряжение генератора Г. Если напряжение генератора ниже заданного, то нормально замкнутые контакты р реле шунтируют сопротивление Rв цепи обмотки возбуждения B, в результате чего напряжение начинает возрастать. Когда оно достигает определённого значения, реле срабатывает, его контакты размыкаются и напряжение начинает уменьшаться. Это приводит к отпусканию реле, контакты которого вновь размыкаются, и весь процесс повторяется. Напряжение генератора с некоторой частотой пульсирует вблизи заданного среднего значения. Такие В. р. используются для генераторов небольшой мощности, например, автомобильных и авиационных.

Уставка В. р. зависит от натяжения пружины реле, размера зазора магнитной системы или от электрического сопротивления в цепи катушки.

Колебательный режим исполнительного элемента В. р. может создаваться также посторонним устройством, не зависящим от регулируемого объекта.

6.1 Электродвигатель – это просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

 

Промышленный электродвигатель

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

6.2

Контактно-транзисторный регулятор

Применение контактно-транзисторных регуляторов (КТР) являлось переходным этапом от вибрационных реле-регуляторов к транзисторным регуляторам напряжения.

  • В КТР РР362 (РР362А) (см. рис. 1) током в обмотке возбуждения управляет транзистор VT, а управление транзистором осуществляет реле регулятора напряжения KV, работающее по вибрационному принципу. Реле регулятора напряжения имеет нормально разомкнутые контакты KV:1. При включении выключателя зажигания в цепи эмиттер-база транзистора VT через диод смещения VD1 и резистор цепи базы Rб начинает протекать ток от аккумуляторной батареи. Этого достаточно, чтобы транзистор VT открылся и к цепи питания через диод VD1 и переход эмиттер-коллектор транзистора подключилась обмотка возбуждения, чем и обеспечивается возбуждение генератора.

Напряжение генератора подводится к обмотке регулятора напряжения KV через диод VD1, ускоряющий резистор Ry и резистор термокомпенсации Rтк. При возрастании напряжения с ростом частоты вращения генератора реле KV замыкает свои контакты KV:1. В результате этого переход эмиттер-база транзистора VT оказывается смещенным в обратном направлении — потенциал эмиттера ниже потенциала базы на величину падения напряжения в диоде VD1. Обратное смещение этого перехода прерывает протекание тока в цепи транзистора и переводит его в закрытое состояние.  В таком случае ток в обмотку возбуждения поступает через ускоряющий Ry и добавочный Rд резисторы, что приводит к уменьшению этого тока, уменьшению напряжения генератора. Уменьшение напряжения вызывает размыкание контактов KV:1, открывание транзистора VT, подключение обмотки возбуждения в цепь питания непосредственно через открытый транзистор VT, возрастание тока в этой обмотке, возрастание напряжения генератора, т. е. возникновение ступенчатого процесса поддержания постоянства напряжения.  Ускоряющий резистор Ry является элементом жесткой обратной связи в регуляторе, он повышает частоту вибрации контактов регулятора. Диод VD2 — гасящий. Остальные элементы схемы, в том числе нормально замкнутые контакты реле-регулятора напряжения KV:2, относятся к схеме защиты регулятора напряжения от аварийных режимов.  В нормальном режиме работы регулятора обмотки реле защиты КА либо вообще отсоединена от цепи питания (контакты KV:2 разомкнуты), либо подсоединена к этой цепи через сопротивление обмотки возбуждения.  Сила тока в обмотке реле защиты в этом случае недостаточна, чтобы вызвать его срабатывание, контакты остаются разомкнутыми и реле КА не оказывает никакого влияния на работу регулятора напряжения.

При аварийном режиме замыкания вывода "Ш" на массу обмотка возбуждения оказывается замкнутой накоротко и напряжение генератора уменьшается, что вызывает замыкание контактов регулятора KV:2. Обмотка реле защиты КА оказывается под напряжением питания непосредственно, минуя сопротивление обмотки возбуждения. При этом реле срабатывает, замыкает свои контакты КА:1, что приводит к запиранию транзистора и предотвращает протекание по нему опасных токов. После устранения замыкания "Ш" на массу регулятор вновь вступает в работу.

Бесконтактный- транзисторный регулятор напряжения

Бесконтактный транзисторный регулятор напряжения 121.3702 (см.рис.) применяется с генератором Г221А взамен вибрационного регулятора напряжения РР380. Схема регулятора достаточно проста и типична, что позволяет использовать ее для иллюстрации принципа работы транзисторных регуляторов. Эталонной величиной в регуляторе является напряжение стабилизации стабилитрона VD1. Характерной особенностью стабилитрона является то, что если напряжение между его катодом и анодом по величине меньше напряжения стабилизации, ток через него практически не протекает. Если напряжение между катодом и анодом достигает величины напряжения стабилизации, ток через стабилитрон резко возрастает, происходит "пробой" стабилитрона. При этом напряжение между его катодом и анодом остается практически неизменным.

Измерительным органом в регуляторе является делитель напряжения, состоящий из резистора R2 и двух параллельно включенных резисторов R1 и R3. К стабилитрону VD1 через переход эмиттер-база транзистора VT1 подводится та часть напряжения генератора, которая выделяется на параллельно включенных резисторах R1, R3. Стабилитрон является органом сравнения в регуляторе напряжения. Регулирующим органом в схеме является электронное реле на трех транзисторах VT1—VT3. Эти транзисторы при работе регулятора напряжения могут находиться в одном из двух состояний — открытом (ток в цепи эмиттер-коллектор транзистора протекает) и закрытом — ток в цепи эмиттер-коллектор отсутствует. Цепь между эмиттером и коллектором в этом смысле аналогична контактам реле. Для перехода транзистора из закрытого в открытое состояние в цепи эмиттер-база должен появиться ток, для чего к переходу эмиттер-база следует приложить напряжение соответствующей полярности, т. е. переход эмиттер-база должен быть смещен в прямом направлении. Ток, открывающий транзисторы типа P—N—P, протекает от эмиттера к базе (эмиттер имеет более высокий потенциал, чем база), а типа N—Р—N — от базы к эмиттеру (положительный потенциал на базе относительно эмиттера). Если переход эмиттер-база смещен в обратном направлении, то транзистор закрыт.

  • Регулирование напряжения транзисторным регулятором происходит следующим образом. До пуска двигателя при включении выключателя зажигания 5 (см. рис.3а здесь) напряжение аккумуляторной батареи подводится к делителю напряжения R1—R3. При этом к стабилитрону VD1 поступает та часть этого напряжения, которая выделяется на плече делителя, образованном параллельно включенными резисторами R1, R3. Резистор R1 настройки регулятора подбирается таким образом, чтобы напряжение на резисторах R1, R3 при включении только аккумуляторной батареи было меньше, чем напряжение стабилизации стабилитрона VD1, т. е недостаточно для его пробоя. При этом стабилитрон препятствует протеканию тока в цепи базы транзистора VT1, который находится, следовательно, в закрытом состоянии. Транзисторы VT2 и VT3 открыты, так как в цепях их баз протекают токи — у транзистора VT2 через резистор R5, а у транзистора VT3 — через переход эмиттер-коллектор транзистора VT2.

  • Транзисторы VT1 и VT2 имеют тип P—N—P, а транзисторы VT3 — N—P—N. Следовательно, при включении аккумуляторной батареи электронное реле регулятора напряжения находится во включенном состоянии, его выходной транзистор VT3 открыт и ток от аккумуляторной батареи поступает в обмотку возбуждения, обеспечивая возбуждение генератора.

  • После пуска двигателя генератор вступает в работу, его напряжение возрастает до тех пор, пока напряжение на плече делителя R1, R3 не станет равным напряжению стабилизации стабилитрона VD1. При этом стабилитрон пробивается, возникает ток в базе транзистора VT1 и он открывается. Поскольку сопротивление перехода эмиттер-коллектор открытого транзистора мало, то этот переход транзистора VT1 практически накоротко соединяет базу с эмиттером транзистора VT2, шунтирует этот его переход, ток в базе транзистора VT2 прекращается и он закрывается.

  • Если закрыт транзистор VT2, то закрывается и транзистор VT3, так как ток в его базовой цепи прерывается. Электронное реле регулятора переходит в выключенное состояние, ток в обмотке возбуждения уменьшается, соответственно уменьшается и напряжение генератора. При этом уменьшается напряжение на резисторах R1, R3. Как только оно становится меньше напряжения стабилизации стабилитрона VD1, транзистор VT1 закрывается, VT2 и VT3 открываются, напряжение генератора возрастает, т. е. процесс повторяется.

7.1 За схемою інтегрального регулятора напруги 17.3702 поясніть, як він працює.

Схема интегрального регулятора 17.3702, конструкция которого обеспечивает встраивание в него щеточного узла генератора 37.3701 представлена на рис. 2