Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора по термеху.doc
Скачиваний:
9
Добавлен:
15.09.2019
Размер:
273.41 Кб
Скачать

Средняя скорость

Средняя скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Средняя скорость, в отличие от мгновенной скорости не является векторной величиной. Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени.

Мгновенная скорость

Мгновенная скорость - скорость в данный момент времени.

Среднее ускорение

Среднее ускорение - физическая величина, численно равная отношению изменения скорости к промежутку времени, за который это изменение произошло. Вектор среднего ускорения совпадает с направлением вектора изменения скорости.

Мгновенное ускорение

Мгновенное ускорение - предел, к которому стремится среднее ускорение за бесконечно малый промежуток времени.

Тангенциальная составляющая ускорения

Тангенциальная  составляющая ускорения характеризует  быстроту изменения скорости по модулю (направлена по касательной к траектории).

Нормальная составляющая ускорения

Нормальная составляющая ускорения характеризует быстроту из­менения скорости по направлению (на­правлена к центру кривизны траекто­рии). Нормальная составляющая ус­корения направлена по нормали к тра­ектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение

Полное ускорение тела – геометри­ческая сумма тангенциальной и нормаль­ной составляющих.

Кинематические уравнения равнопеременного поступательного движения

Угловая скорость

Угловая скорость, величина, характеризующая быстроту вращения твёрдого тела.

Угловое ускорение

Угловое ускорение, величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

Угловая скорость для равномерного вращательного движения

В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.

При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеряемой в герцах (Гц).

ω = f

Кинематические уравнения равнопеременного вращательного движения

Связь между линейными и угловыми величинами при вращательном движении

Импульс (количество движения)

Импульс (количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости.

Второй закон Ньютона

В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Он же в проекциях на касательную и нормаль к траектории точки

Сила трения скольжения

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется «сухим». В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

Сила трения качения

Сила трения качения – момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

При отсутствии относительного движения двух контактирующих тел и наличии сил, стремящихся осуществить такое движение, в ряде ситуаций возникает

Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.

Закон сохранения импульса (для замкнутой системы)

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Уравнение движения тела переменной массы

Формула Циолковского

Работа переменной силы на участке траектории 1-2

Работой  силы  на всём участке траектории 1-2 называется величина, равная алгебраической сумме элементарных работ, совершаемых этой силой на каждом из элементарных участков.

Работа постоянной силы

Работой постоянной силы называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы и перемещения .

Работа переменной силы на пути

Средняя мощность

Средняя мощность - физическая величина, равная отношению работы к промежутку времени за который эта работа совершена.

Мгновенная мощность

Мгновенная мощность - предел, к которому стремится средняя мощность за бесконечно малый промежуток времени. Единицей мгновенной мощности являются: - ватт (Вт); или - лошадиная сила (лс).

Кинетическая энергия

Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения, измеряется в Джоулях.

Связь между силой в точке и потенциальной энергией

Сила упругости

Сила упругости - сила, возникающая в деформируемом теле и направленная в сторону, противоположную смещению частиц при деформации.

Потенциальная энергия тела, поднятого над поверхностью земли

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

Потенциальная энергия упругодеформированного тела

Потенциальная энергия упругодеформированной (сжатой или растянутой) пружины зависит от степени ее деформации.

Полная механическая энергия системы

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

Закон сохранения механической энергии (для консервативной системы)

Закон сохранения механической энергии гласит, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Скорость шаров массами и после абсолютно упругого центрального удара

Скорость шаров после абсолютно неупругого удара

Момент инерции системы (тела)

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Моменты инерции полого и сплошного цилиндров (диска) относительно оси симметрии

Момент инерции шара относительно оси, проходящей через центр шара

Момент инерции тонкого стержня относительно оси, перпендикулярной стержню и проходящей через его середину

Момент инерции тонкого стержня относительно оси, перпендикулярной стержню и проходящей через его конец

Теорема Штейнера

Момент инерции тела I относительно произвольной оси равен сумме момента инерции этого тела Ic относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния R между осями.

Кинетическая энергия вращающегося тела относительно неподвижной оси

Кинетическая энергия тела, катящегося по плоскости без скольжения

Момент силы относительно неподвижной точки

Моментом силы F относительно неподвиж­ной точки О называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора r, проведенного из точки О в точку А приложения силы, на силу F.

Момент силы относительно неподвижной оси

Моментом силы относительно непод­вижной оси z называется скалярная вели­чина Мz, равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Модуль момента силы

Работа при вращении тела

Момент импульса материальной точки относительно неподвижной точки

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением.

Момент импульса твёрдого тела относительно неподвижной оси

Момент импульса твердого тела относительно неподвижной оси есть сумма моментов импульса отдельных его точек.

Уравнение динамики вращательного движения твёрдого тела

Закон сохранения момента импульса

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон всемирного тяготения

Сила гравитационного притяжения двух материальных точек прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Сила тяжести

Сила тяжести — равнодействующая силы тяготения тела (материальной точки) к Земле и центробежной силы инерции, обусловлено вращением Земли.

Напряжённость поля тяготения

Потенциал поля тяготения

Потенциал поля тяготения – скалярная величина, которая определяется потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой М.

Взаимосвязь между потенциалом поля тяготения и его напряжённостью

Уравнение неразрывности

Уравнение Бернулли

Релятивистское замедление хода часов

Релятивистское замедление хода часов – обычно подразумевают кинематический эффект специальной теории относительности, заключающийся в том, что в движущемся теле все физические процессы проходят медленнее, чем следовало бы для неподвижного тела по отсчётам времени неподвижной (лабораторной) системы отсчёта.

Релятивистское (лоренцево) сокращение длины стержня

Релятивистское (лоренцево) сокращение длины стержня – предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы имеют меньшую длину (линейные размеры в направлении движения), чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.

Релятивистский закон сложения скоростей

Сумма движений не может привести к скорости, большей скорости света.

Масса релятивистской частицы

Определив массу частицы m как коэффициент пропорциональности между скоростью и импульсом, получим, что масса частицы зависит от ее скорости.

Релятивистский импульс

Закон взаимосвязи массы и энергии

Любое тело обладает энергией уже только благодаря факту своего существования, и эта энергия, называемая собственной энергией тела, равна произведению массы тела на квадрат скорости света в вакууме.

Связь между полной энергией и импульсом релятивистской частицы

2. Диф. уравнение движения свобод. мат. точ. в декарт.

mx = ∑ Pкx }; my =∑ Pкy }; mz =∑ Pкz }

3. Естественные уравнения движения мат. точки.

0 = ∑ Pко

md2s/ dt2 = ∑ Pi cos (Pi, τ);

2/ρ = ∑ Pi cos (Pi, n).

8. Диф. уравнение свободных колебаний мат. т. и уравнение гармон. колебательного движения точки.

x + k2x = 0 - Диф. уравнение свободных колебаний мат.

x = A sin(kt+β) - уравнение гармон. колебательного движения точки.

9. Амплитуда и т.д для свободных колебаний.

A = √x2o + (x0/k)2.

10. Диф. уравнение затухающих колебаний.

x + 2nx + k2x = 0 - Диф. уравнение.

x = Ae-nt sin (√k2 – n2t + β);

x = Ae-ntsh (√n2 – k2t + β) – апериодическое уравнение.

11. Период затухающих колебаний, декремент и т.д.

T* = T/√1 – (n/k)2;

e-nT*/2 – декремент, -nT*/2 – логарифмич. декрмент.

n = α/2m – коэф. затухания. k* = √k2 – n2

12. Диф. уравнение вынужден. кол.

x + k2x = hsin (pt + δ)

13. Амплитуда и фаза вынуж. кол.

p<k, pt + δ – фаза

AB = h/(k2 – p2)

p>k, pt + δ – π

AB = h/(p2 – k2).

14. Движение при резонансе.

x + k2x = h sin (kt + δ),

или x = C1 cos kt + C2 sin kt - h/(2k)*t cos (kt + δ).

15. Основное уравнение динамики относительного движения.

r = ∑Pi + Фе + Фс

17. Принцип относительности.

Никакие механические явления, происходящие в среде, не могут обнаружить её прямолинейного и равномерного поступательного движения.

19. Формулы, определяющие центр масс системы.

xc = ∑mixi/m, yc = ∑m=yi/m, zc = ∑mizi/m

21. Моменты инерции твёрдого тела.

Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до плоскости.

JyOz = ∑mixi2; JzOx = ∑miyi2; JxOy = ∑mizi2.

Моментом инерции твёрдого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси.

Jx = ∑mi (yi2 + zi2); Jy = ∑mi (zi2 + xi2); Jz = ∑mi(xi2 + yi2).

Моментом инерции твёрдого тела относительно полюса (полярным моментом инерции) называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от точки до этого полюса.

Jo = ∑miri2 = ∑mi (xi2 + yi2 + zi2).

22. Радиус инерции.

Момент инерции твёрдого тела относительно заданной оси, например

оси z, можно представить в виде произведения массы тела на квадрат линейной величины, называемой радиусом инерции тела относительно этой оси: Jz = miz2, где m – масса тела, iz2 – радиус инерции относительно оси z.

23. Момент инерции стержня и диска.

Определим момент инерции однородного тонкого стержня относительно оси Сy , проходящей через центр масс стержня.

JCy = ml2/12 .

Момент инерции диска:

JCz = mR2/2, JCx = JCy = mR2/4.

24. Дать понятие импульса постоянной и переменной силы.

Если постоянная по модулю и направлению сила Р действует на тело за промежуток времени τ = t2 – t1, то её импульсом за этот промежуток времени является вектор Š = Pτ.

Чтобы найти импульс переменной силы P = P(t) за промежуток времени

t2 – t1 этот промежуток разбивает на n элементарных промежутков Δtк и определяют элементарных импульсов сила за эти промежутки. ΔŠк = РкΔtк

25. Импульс равнодействующей сил.

Š = Š1 + Š2 +…+ Šn

в проекциях Šx = Š1x + Š2x +…+ Šnx

Šz, Šy =…………………..

26. Теорема об изменении количества движения в конечной и диф. форме.

ma = mdυ/dt = d(mυ)/dt =P - в диф. форме.

2 – mυ1 = ∑ Ši – в кон. форме.

27. Количество движения мех. системы.

Количеством движения мех. сис. наз. вектор, равный геометр. сумме (главному вектору) количеств движения всех мат. точ. этой сис.

K = ∑miυi

28. Закон сохранения количеств движения системы.

Если внешие силы отсутствуют или главный вектор внешних сил, действующих на мех. сист. равен 0, то кол –во движения мех. сис. остаётся постоянны по модулю и направлению и равным своему нач. знач.

29. Момент колич. движения мат. т. относительно центра.

Моментом кол. движ. mυ мат. точки М относительно неподвижного центра О называется вектор lo = mυh, где h – плечо вектора mυ относительно центра О.

Моментом количества движения мех. сис. относительно даного центра О называется векторная величина Lo, = геометр. сумме моментов количеств движения всех мат. т. системы относительно центра О: Lo = ∑m0(mkυk) =

= ∑rk mkυk

31. Закон сохранения кинетического момента мех. сис.

закон сохранения кинетич. момента сис. относительно центра:

если главный момент внешних сил, действующих на сис. относительно неподвиж.центра = 0, то кин. момент системы относительно неподвижного центра остаётся постоянным по модулю и направлению.

32. Диф. уравн. поступ. движ. тв. тела.

mxc = ∑XiE = XE; myc = ∑ YiE = YE; mzc = ∑ZiE = ZE.

33. Диф. уравн. плоского движения.

mxc = ∑XiE = XE; myc = ∑ YiE = YE; dLζr/dt = ∑ME = MζE, где Lζr – кинет. мом. тела относительно оси ζ.

34. Выражения работы постоянной силы на конеч. перемещении.

35.Мощность силы.

Отношение работы произведённой силой F к приложенному промежутку времени наз. мощностью: W = dA/dt = F*dr/dt = Fυ; т.е. мощность равна скалярному произведению вектора силы на вектор скорости.

36. Как определяется работы силы тяжести, кода она больше или меньше 0

A = ± mgh или A = mg(z0 – z1). Работа силы тяжести положительна, если начальное положение точки выше конечного, и отрицательна в противоположном случае.

37. Работа сил упругости.

A = -c/2*(x12 – x02). Работа силы упругости будет положительна, когда конец пружины перемещается к равновесному положению, и отрицательная, когда конец пружины удаляется от равновесного положения.

38. Теорема об изменении кин. энергии мат. точки в кон. и диф. форме.

22/2 – mυ12/2 = ∑Ai – кон. форма. Изменение кинетической энергии мат. точки на некотором её перемещении = алгебраической сумме работ всех действующих на эту точку сил на этом перемещении.

d(mυ2/2) = ∑δAi – дифференциал кин. энерг. м. т. равен сумме элементарных работ сил, приложенных к точке.

39. Работа внутренних сил, приложенных к твёрдому телу.

Сумма работ твердого тела на любом его перемещении равна 0.

AJ = 0.

40. Кинет. Энергия мат. Точ. И мех. Сист.

Кинетическая энергия мат. точ. равна половиен произведения массы точки на квадрат её скорости: T=1/2*mυ2;

Кинет. энер. мех. сис. равна сумме кинет. энергий всех мат. точ. системы: T =∑Tк = 1/2*∑mк υк2

41. Формулы определяющие кин. энер. т.тела при пост, вращ, и плос. движ

Пост. движ. – T = 1/2* mυ2.

Вращ. вокруг неподвижной оси. – T = 1/2*Jzω2.

Плоское – T =1/2* mυ­c2 + 1/2*Jczω2.

42. Понятие силового поля и его разновидности.

Силовым полем называется физическое пространство, удовлетворяющее условию, при котором на точки механической системы, находящейся в этом пространстве, действуют силы, зависящие от положения этих точек или от положения точек и времени. Силовое поле. силы которого не зависят от времени, называется стационарным. Стационарное силовое поле называется потенциальным, если существует такая функция, однозначно зависящая от координат точек системы, через которую проекции силы на координатные оси в каждой точке поля выражаются так: Xi=∂υ/∂xi; Yi=∂υ/∂yi; Zi = ∂υ/∂zi.

43. Дать понятие силовой функции и потенциальной энергии.

функцию - U = U(xi, yi, zi, x2, y2, z2,…, xn, yn, zn) наз. силовой функцией.

Потенциальная энергия системы в любом данном её положении = равна сумме работ сил потенциального поля, приложенных к её точкам на перемещение системы из даного положения в нулевое.

44.Элементарная работа и работа на конечном перемещении мех. системы под действием сил потенциального поля.

δA = dU. Элементарная работа = полному дифференциалу силовой функции:

A1, 2 = ∫(1)(2) dU = U2 – U1 – Работа сил поля на конечном перемещении мех. сис. из положения 1 в положение 2.

45. Закон сохранения мех. энерг.

При движении мех. сис. в стационарном потенцциальном поле полная мех. энерг. остаётся неизменной. Т + П = const.

46. Понятие обобщённых координат.

Независимые величины, однозначно определяющие положение точек мех. системы, наз. обобщёнными координатами этой системы.

47. Понятие возможных перемещений.

Возможные перемещениями несвободной мех. сис. наз. воображаемые бесконечно малые перемещения, допускаемые наложенными на сис. связями.

48. Принцип возможных перемещений.

Необходимое и достаточное условие равновесия системы сил, приложенных к мех. сис., подчиненной стационарным двусторонним и идеальным связям, заключается в равенстве 0 суммы элементарных работ задаваемых сил на любом возможном перемещении системы из рассматриваемого её положения.

50. Главный вектор и гл. момент.

∑ Фi = Ф* Главный вектор

∑ Mio Ф = МоФ

Механика – наука о механическом движении и механическом взаимодействии материальных тел.

Теоретическая механика – раздел механики, в котором изучают законы движения механических систем и общие свойства этих движений.

Статикараздел механики, в котором изучают условия равновесия механических систем под действием сил.

Массаодна из основных характеристик любого материального объекта, определяющая его инертные и гравитационные свойства.

Инертностьсвойство материального тела, проявляющееся в сохранении движения, совершаемого им при отсутствии действующих сил, и в постепенном изменении этого движения с течением времени, когда на тело начинают действовать силы.

Материальная точкаточка, имеющая массу.

Абсолютно твёрдое теломатериальное тело, в котором расстояние между двумя любыми точками остается неизменным.

Механическая системалюбая совокупность материальных точек, движения которых взаимозависимы.

Механическое действиедействие на данное тело со стороны других тел, которое приводит к изменению скоростей точек этого тела или следствием которого является изменение взаимного положения точек данного тела.

Механическое движениеизменение с течением времени взаимного положения тел в пространстве или взаимного положения частей данного тела.

Свободное телотело, на перемещения которого в пространстве не наложено никаких ограничений.

Равновесие механической системы состояние механической системы, при котором её точки под действием приложенных сил остаются в покое по отношению к рассматриваемой системе отсчёта.

Основная система отсчётасистема координат, связанная с телом, по отношению к которому определяется положение других тел (механических систем) в разные моменты времени.

Сила – векторная величина, являющаяся мерой механического действия одного тела на другое.

Линия действия силы – прямая линия, вдоль которой направлен вектор, изображающий силу.

Сила тяжестисила, действующая на материальную точку вблизи земной поверхности, равная произведению массы m этой точки на ускорение g свободного падения в вакууме.

Вес тела – сумма модулей сил тяжести, действующих на частицы этого тела.

Внешняя силасила, действующая на какую-либо точку механической системы со стороны тел, не принадлежащих рассматриваемой механической системе.

Внутренние силысилы, действующие на какие-либо точки механической системы со стороны других точек, принадлежащих рассматриваемой механической системе.

Система силлюбая совокупность сил, действующих на механическую систему.

Уравновешенная система силсистема сил, которая будучи приложена к свободному телу, находящемуся в равновесии, не выводит его из этого кинематического состояния.

Уравновешивающая система силсистема сил, которая вместе с заданной другой системой сил составляет уравновешенную систему сил.

Эквивалентные системы силдве или несколько систем сил, имеющих одну и ту же уравновешивающую систему сил.

Равнодействующая системы силсила, эквивалентная данной системе сил.

Плоская система силсистема сил, линии действия которых расположены в одной плоскости.

Сходящаяся система силсистема сил, линии действия которых пересекаются в одной точке.

Сосредоточенная силасила, приложенная к телу в какой-либо одной его точке.

Распределённые силысилы, действующие на все точки некоторой части линии, поверхности или объёма.

Несвободное твёрдое телотело, на перемещения которого в пространстве наложены ограничения.

Связиматериальные тела, накладывающие ограничения на положения и скорости точек механической системы, которые должны выполняться при любых действующих на систему силах.

Реакции связейсилы, действующие на точки механической системы со стороны материальных тел, осуществляющих связи, наложенные на эту систему.

Гладкая связьматериальное тело, имеющее поверхность, силами трения о которую рассматриваемой механической системы пренебрегают.

Гибкая связьнерастяжимые нить или трос, вес которых не учитывают.

Невесомый стержень – недеформируемый стержень, загруженный только по его концам.

Проекция силы на осьскалярная величина, равная взятой со знаком плюс или минус длине отрезка, заключенного между проекциями на ось начала и конца силы.

Проекция силы на координатную ось – величина, равная произведению модуля силы на косинус угла, составленного направлениями силы и оси.

Проекция равнодействующей сходящейся системы сил на какую-либо ось – величина, равная алгебраической сумме проекций слагаемых векторов на ту же ось.

Пара силсистема двух параллельных, противоположно направленных и равных по модулю сил, не лежащих на одной прямой.

Плоскость действия пары силплоскость, в которой находятся линии действия сил.

Плечо пары силкратчайшее расстояние (длина перпендикуляра) между линиями действия сил, составляющих пару сил.

Алгебраический момент пары силвеличина, равная взятому с соответствующим знаком произведению модуля одной из сил на её плечо.

Момент пары силвекторная мера механического действия пары, равная моменту одной из сил пары относительно точки приложения другой силы.

Момент силы F относительно точки О –вектор MО(F) или MО, приложенный в этой точке и направленным перпендикулярно к плоскости, содержащей силу и точку, в такую сторону, чтобы, смотря навстречу этому вектору, видеть силу F, стремящейся вращать эту плоскость в сторону, обратную вращению часовой стрелки.

Плоская произвольная система силсистема сил, линии действия которых произвольно расположены в одной плоскости.

Статически определимые задачи – задачи, в которых реакции внешних связей находятся из уравнений равновесия.

Статически неопределимые задачи – задачи, в которых реакции внешних связей не могут быть найдены из уравнений статического равновесия, составленных для данной механической системы.

Кинематика – раздел механики, в котором изучаются движения материальных тел без учёта их масс и действующих на них сил.

Примечание. В кинематике движущиеся объекты рассматриваются как геометрические точки или тела и именуются соответственно точка или тело.

Основная система отсчёта – при рассмотрении движения тел по отношению к нескольким системам отсчёта – та из этих систем, относительно которой определяется движение всех остальных.

Примечание. В данном методическом пособии основная система отсчёта обозначена как неподвижная система отсчёта (НСО).

Механическое движение – изменение с течением времени взаимного положения в пространстве материальных тел или взаимного положения частей данного тела.

Примечания: 1. В пределах механики механическое движение можно кратко называть движение. 2. Понятие «механическое движение» может относиться и к геометрическим объектам.

Подвижная система отсчёта – система отсчёта, движущаяся по отношению к основной системе отсчёта.

Примечание. Для обозначения подвижной системы отсчёта в данном методическом пособии используется аббревиатура (ПСО).

Траектория точки – геометрическое место положений точки в рассматриваемой системе отсчёта.

Путь точки – расстояние, пройденное точкой за рассматриваемый промежуток времени, измеряемое вдоль траектории и направления движения точки.

Скорость точки – кинематическая мера движения точки, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчёта.

Примечание. Под радиус-вектором точки понимается вектор, проведенный от некоторой точки, неизменно связанной с рассматриваемой системой отсчёта, до движущейся точки.

Ускорение точки – мера изменения скорости точки, равная производной по времени от скорости этой точки в рассматриваемой системе отсчёта.

Естественные оси – прямоугольная система осей с началом в движущейся точке, направленных соответственно по касательной, главной нормали и бинормали к траектории этой точки.

Касательное ускорение точки – составляющая ускорения точки вдоль касательной к траектории при разложении ускорения по естественным осям.

Нормальное ускорение точки – составляющая ускорения точки вдоль главной нормали к траектории при разложении ускорения по естественным осям.

Сложное движение точки или тела – движение точки или тела, исследуемое одновременно в основной и подвижной (подвижных) системах отсчёта.

Примечание. При этом могут определяться характеристики движения точки или тела по отношению к каждой из систем отсчёта и зависимости между этими характеристиками.

Абсолютное движение точки – движение точки или тела по отношению к основной системе отсчёта.

Относительное движение точки – движение точки или тела по отношению к подвижной системе отсчёта.

Переносное движение – движение подвижной системы отсчёта по отношению к основной системе отсчёта.

Абсолютная траектория точки – траектория точки по отношению к основной системе отсчёта.

Относительная траектория точки – траектория точки по отношению к подвижной системе отсчёта.

Абсолютная скорость точки – скорость точки в абсолютном движении.

Относительная скорость точки – скорость точки в относительном движении.

Переносная скорость точки – при сложном движении точки – скорость той, неизменно связанной с подвижной системой отсчёта точки пространства, с которой в данный момент времени совпадает движущаяся точка.

Абсолютное ускорение точки – ускорение точки в абсолютном движении.

Относительное ускорение точки – ускорение точки в относительном движении.

Переносное ускорение точки – при сложном движении точки – ускорение той, неизменно связанной с подвижной системой отсчёта точки пространства, с которой в данный момент совпадает движущаяся точка.

Кориолисово ускорение точки – при сложном движении точки – составляющая её абсолютного ускорения, равная удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки.

Поступательное движение твёрдого тела – движение тела, при котором прямая, соединяющая две любые точки этого тела, перемещается, оставаясь параллельной своему начальному положению.

Примечание. В технической литературе используют краткую форму термина – «поступательное движение».

Вращательное движение твёрдого тела – движение тела, при котором все точки, лежащие на некоторой прямой, неизменно связанной с телом, остаются неподвижными в рассматриваемой системе отсчёта.

Примечания: 1. Эта прямая называется осью вращения. 2. Перемещение вращающегося тела из одного положения в другое называется поворотом.

Угол поворота твёрдого тела – угол между двумя последовательными положениями полуплоскости, неизменно связанной с телом и проходящей через его ось вращения.

Примечание. Можно использовать краткую форму этого термина – угол поворота.

Плоскопараллельное движение твёрдого тела – движение тела, при котором все его точки движутся в плоскостях, параллельных некоторой плоскости, неподвижной в рассматриваемой системе отсчёта.

Примечание. В технической литературе зачастую используется краткая форма этого термина – плоское движение твёрдого тела.

Мгновенный центр скоростей – точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Мгновенный центр вращения – точка неподвижной плоскости, поворотом вокруг которой плоская фигура перемещается из данного положения в положение, бесконечно близкое к данному.

Примечание. В каждый момент времени мгновенный центр вращения совпадает с мгновенным центром скоростей.

Угловая скорость – кинематическая мера вращательного движения тела, выражаемая вектором, равным по модулю отношению элементарного угла поворота тела к элементарному промежутку времени, за который совершается этот поворот, и направленный вдоль мгновенной оси вращения в ту сторону, откуда элементарный поворот тела виден происходящим против хода часовой стрелки.

Примечание. Для тела, вращающегося вокруг неподвижной оси, модуль угловой скорости равен модулю производной от угла поворота по времени.

Угловое ускорение – мера изменения угловой скорости тела, равная производной от угловой скорости по времени.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]