Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Силы и взаимодействия.doc
Скачиваний:
0
Добавлен:
13.09.2019
Размер:
114.18 Кб
Скачать

Структуры микромира

Ранее элементарными частицами называли частицы, входящие в состав атома и неразложимые на более элементарные составляющие, а именно электроны и ядра.

Позднее было установлено, что ядра состоят из более простых частиц – нуклонов (протонов и нейтронов), которые в свою очередь состоят из других частиц. Поэтому элементарными частицами стали считать мельчайшие частицы материи, исключая атомы и их ядра.

На сегодняшний день открыты сотни элементарных частиц, что требует их классификации:

– по видам взаимодействий

– по временам жизни

– по величине спина

Элементарные частицы делятся на следующие группы:

Составные и фундаментальные (бесструктурные) частицы

Составные частицы

Адроны (тяжелые) – частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: мезоны – адроны с целым спином, то есть являющиеся бозонами; барионы – адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, – протон и нейтрон, т.е. нуклонов.

Фундаментальные (бесструктурные) частицы

Лептоны (легкие) – фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 1018 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино.

Кварки – дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались.

Калибровочные бозоны – частицы, посредством обмена которыми осуществляются взаимодействия:

– фотон – частица, переносящая электромагнитное взаимодействие;

– восемь глюонов – частиц, переносящих сильное взаимодействие;

– три промежуточных векторных бозона W+, W и Z0, переносящие слабое взаимодействие;

– гравитон – гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

По современным представлениям, к фундаментальным частицам (или «истинно» элементарным частицам), не имеющим внутренней структуры и конечных размеров, относятся:

- кварки и лептоны

- частицы, обеспечивающие фундаментальные взаимодействия: гравитоны, фотоны, векторные бозоны, глюоны.

Классификация элементарных частиц по временам жизни:

- стабильные: частицы, время жизни которых очень велико (в пределе стремится к бесконечности). К ним относятся электроны, протоны, нейтрино. Внутри ядер стабильны также нейтроны, но они нестабильны вне ядра

- нестабильные (квазистабильные): элементарные частицы – это такие частицы, которые распадаются за счет электромагнитного и слабого взаимодействий, и время жизни которых больше 10–20 сек. К таким частицам относится свободный нейтрон (т.е. нейтрон вне ядра атома)

- резонансы (нестабильные, краткоживущие). К резонансам относятся элементарные частицы, распадающиеся за счет сильного взаимодействия. Время жизни для них меньше 10-20 сек.

Классификация частиц по участию во взаимодействиях:

- лептоны: к их числу относятся и нейтроны. Все они не участвуют в водовороте внутриядерных взаимодействий, т.е. не подвержены сильному взаимодействию. Они участвуют в слабом взаимодействии, а имеющие электрический заряд участвуют и в электромагнитном взаимодействии

- адроны: частицы, существующие внутри атомного ядра и участвующие в сильном взаимодействии. Самые известные из них это протон и нейтрон.

На сегодня известны шесть лептонов:

- к одному семейству с электроном относятся мюоны и тау-частицы, которые похожи на электрон, но массивнее его. Мюоны и тау-частицы нестабильны и со временем распадаются на несколько других частиц, включая электрон

- три электрически нейтральных частицы с нулевой (или близкой к нулю, на этот счет ученые пока не определились) массой, получившие название нейтрино. Каждое из трех нейтрино (электронное нейтрино, мюонное нейтрино, тау-нейтрино) парно одному из трех разновидностей частиц электронного семейства.

У самых известных адронов, протонов и нейтрино имеются сотни родственников, которые во множестве рождаются и тут же распадаются в процессе различных ядерных реакций. За исключением протона, все они нестабильны, и их можно классифицировать по составу частиц, на которые они распадаются:

- если среди конечных продуктов распада частиц имеется протон, то его называют барион

- если протона среди продуктов распада нет, то частица называется мезон.

Сумбурная картина субатомного мира, усложнявшаяся с открытием каждого нового адрона, уступила место новой картине, с появлением концепции кварков. Согласно кварковой модели, все адроны (но не лептоны) состоят из еще более элементарных частиц – кварков. Так барионы (в частности протон) состоят из трех кварков, а мезоны – из пары кварк – антикварк.

Всю вышеприведенную классификацию можно представить в виде схемы:

Классификация по величине спина

Спин – собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Все элементарные частицы делятся на два класса:

Бозоны – частицы с целым спином (например, фотон, глюон, мезоны).

Фермионы – частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино, т.е. лептоны);

Частица и античастица.

В теории элементарных частиц симметрия используется следующим образом: большинсство частиц имеют античастицу - это симметрия.

Почти каждой элементарной частице соответствует своя античастица. Античастица – элементарная частица, имеет те же значения массы и других физических характеристик частицы, которой она вроде бы соответствует, но отличающаяся от нее знаками электрического заряда, магнитного момента и др. Например, электрон несет отрицательный заряд, а парная ему частица позитрон – положительный. Существую также частицы, которые не имеют античастиц, например, фотон.

Античастица отличается от частицы противоположными знаками всех своих зарядов (если это возможно). Поэтому совпадать со своей античастицей может лишь истинно нейтральная частица, все заряды которой равны нулю.

Многие уравнения теории элементарных частиц инвариантны (не изменяются) относительно замены частицы на античастицу.

При взаимодействии частицы с парной ей античастицей, происходит их взаимная аннигиляция («уничтожение») – обе частицы прекращают свое существование, а их масса преобразуется в энергию, которая рассеивается в пространстве в виде вспышки фотонов и прочих сверхлегких частиц. Наблюдаются также процессы, противоположные аннигиляции – рождение пар частица-античастица. Например, рождение из гамма-излучения пары электрон – позитрон. Таким образом, речь идет не об уничтожении или самопроизвольном возникновении материи, а лишь о взаимопревращениях частиц. Эти взаимопревращения лимитируются законами сохранения, такими как:

- закон сохранения электрического заряда: при всех превращениях, в которых участвуют элементарные частицы, суммарный электрический заряд этих частиц остается неизменным

- закон сохранения барионного заряда: разность между числом барионов и числом их античастиц (антибарионов) не изменяется при любых процессах

- закон сохранения энергии: суммарная энергия всех частиц до взаимодействия и после остается неизменной.

Размеры и масса ядра в сравнении с атомом:

- масса ядра примерно равна (чуть меньше) массе атома

- размер атомного ядра в сотни тысяч раз меньше размеров всего атома (диаметр ядра лежит в пределах от 10-12 до 10-13 см).

Основной метод изучения элементарных частиц состоит в том, что ядро-мишень бомбардируется мощным пучком протонов и электронов, а ученые ведут наблюдения за осколками ядра, образующимися в результате столкновения. Этот метод реализуется на «ускорителях элементарных частиц», имеющих различные модификации, и называющихся циклотронами, синхротронами и т.п.