Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
по физике 10.doc
Скачиваний:
16
Добавлен:
12.09.2019
Размер:
1.23 Mб
Скачать

2. Зависимость сопротивления от температуры.

Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:

где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения. Величина, обратная удельному сопротивлению называется удельной проводимостью. Эта величина связана с температурой формулой Нернст-Эйнштейна:

где

  • T — температура проводника;

  • D — коэффициент диффузии носителей заряда;

  • Z — количество электрических зарядов носителя;

  • e — элементарный электрический заряд;

  • C — Концентрация носителей заряда;

  •  — постоянная Больцмана.

Следовательно, сопротивление проводника связано с температурой следующим соотношением:

Сопротивление также может зависеть от параметров и , поскольку сечение и длина проводника также зависят от температуры.

3. Сила взаимодействия двух одинаковых точечных зарядов, находящихся на расстоянии 0,5 м, равна 3,6 н. Найдите значения этих зарядов.

Билет №16

1. Первый закон термодинамики. Изопроцессы. Изотермы Ван-дер-Ваальса. Адиабатный процесс.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Применим первый закон термодинамики к изопроцессам в газах.

В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно,

Q = ΔU = U (T2) – U (T1).

Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением

A = p (V2 – V1) = p ΔV.

Первый закон термодинамики для изобарного процесса дает:

Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV.

При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением

Q = A.

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса – кривые зависимости p от Vm при заданных Т, - определяемые уравнением Ван-дер-Ваальса для моля газа. Эти кривые, полученные для четырёх различных температур имеют довольно своеобразный характер: при высоких температурах (Т>Тк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением её формы, оставаясь монотонно спадающей кривой; при некоторой температуре, на изотерме имеется лишь одна точка перегиба; при низких температурах (Т<Тк) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь. Для пояснения характера изотерм реального газа преобразуем уравнение Ван-дер-Ваальса к виду: pV3m-(RT+pb)V2m+aVm-ab=0. Это уравнение при заданных р и Т Является уравнением третьей степени относительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причём физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах, второму случаю – изотермы при высоких температурах

Адиабатный процесс - это процесс, протекающий без теплообмена с окружающей средой.

Адиабатными можно считать быстро протекающие процессы. При быстром сжатии газа затрачивается работа, приводящая к увеличению внутренней энергии и повышению температуры. Тело, температура которого повышена, должно некоторое количество теплоты передать окружающей среде, но процесс теплопередачи требует некоторого времени, поэтому при быстром сжатии (или расширении) теплота не успевает распространиться из данного объема, то есть dQ = 0, и процесс можно рассматривать как адиабатный.

Адиабатный процесс (первое начало термодинамики):

dA = -dU.