Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
C++ для начинающих.pdf
Скачиваний:
183
Добавлен:
01.05.2014
Размер:
3.97 Mб
Скачать

extern void ff(int);

extern void ff(void *);

то вызов

ff( 0xffbc ); // вызывается ff(int)

будет точно соответствовать ff(int), хотя литерал 0xffbc записан в виде шестнадцатеричной константы. Программист может заставить компилятор вызвать функцию ff(void *), если явно выполнит операцию приведения типа:

ff( reinterpret_cast<void *>(0xffbc) );

// вызывается ff(void*)

Если к фактическому аргументу применяется такое приведение, то он приобретает тип, в который преобразуется. Явные приведения типов помогают в управлении процессом разрешения перегрузки. Например, если при разрешении перегрузки получается неоднозначный результат (фактические аргументы одинаково хорошо соответствуют двум или более устоявшим функциям), то для устранения неоднозначности можно применить явное приведение типа, заставив компилятор выбрать конкретную функцию.

9.3.2. Подробнее о расширении типов

Под расширением типа понимается одно из следующих преобразований:

фактический аргумент типа char, unsigned char или short расширяется до типа int. Фактический аргумент типа unsigned short расширяется до типа int, если машинный размер int больше, чем размер short, и до типа unsigned int в противном случае;

аргумент типа float расширяется до типа double;

аргумент перечислимого типа расширяется до первого из следующих типов, который способен представить все значения элементов перечисления: int, unsigned int, long, unsigned long;

аргумент типа bool расширяется до типа int.

Подобное расширение применяется, когда тип фактического аргумента совпадает с одним из только что перечисленных типов, а формальный параметр относится к

extern void manip( int );

int main() {

// тип char расширяется до

manip( 'a' );

int

 

return 0;

 

соответствующему расширенному типу:

}

Символьный литерал имеет тип char. Он расширяется до int. Поскольку расширенный тип соответствует типу формального параметра функции manip(), мы говорим, что ее вызов требует расширения типа аргумента.

extern void print( unsigned int );

extern void print( int ); extern void print( char );

unsigned char uc;

Рассмотрим следующий пример:

print( uc ); // print( int ); для uc требуется только расширение типа

Для аппаратной платформы, на которой unsigned char занимает один байт памяти, а int – четыре байта, расширение преобразует unsigned char в int, так как с его помощью можно представить все значения типа unsigned char. Для такой машинной архитектуры из приведенного в примере множества перегруженных функций наилучшее соответствие аргументу типа unsigned char обеспечивает print(int). Для двух других функций установление соответствия требует стандартного приведения.

Следующий пример иллюстрирует расширение фактического аргумента перечислимого

enum Stat ( Fail, Pass );

extern void ff( int ); extern void ff( char );

int main() {

// правильно: элемент перечисления Pass расширяется до типа

int

// ff( int )

ff( Pass );

ff( 0 );

// ff( int )

типа:

}

Иногда расширение перечислений преподносит сюрпризы. Компиляторы часто выбирают представление перечисления в зависимости от значений его элементов. Предположим, что в вышеупомянутой архитектуре (один байт для char и четыре байта для int) определено такое перечисление:

enum e1 { a1, b1, c1 };

Поскольку есть всего три элемента: a1, b1 и c1 со значениями 0, 1 и 2 соответственно – и поскольку все эти значения можно представить типом char, то компилятор, как правило, и выбирает char для представления типа e1. Рассмотрим, однако, перечисление e2 со следующим множеством элементов:

enum e2 { a2, b2, c2=0x80000000 };

Так как одна из констант имеет значение 0x80000000, то компилятор обязан выбрать для представления e2 такой тип, который достаточен для хранения значения 0x80000000, то есть unsigned int.

Итак, хотя и e1, и e2 являются перечислениями, их представления различаются. Из-за этого e1 и e2 расширяются до разных типов:

#include <string>

string format( int );

string format( unsigned int );

int main() {

// вызывается format( int )

format(a1);

format(a2);

// вызывается format( unsigned

int )

 

return 0;

 

}

 

При первом обращении к format() фактический аргумент расширяется до типа int, так как для представления типа e1 используется char, и, следовательно, вызывается перегруженная функция format(int). При втором обращении тип фактического аргумента e2 представлен типом unsigned int и аргумент расширяется до unsigned int, из-за чего вызывается перегруженная функция format(unsigned int). Поэтому следует помнить, что поведение двух перечислений по отношению к процессу разрешения перегрузки может быть различным и зависеть от значений элементов, определяющих, как происходит расширение типа.

9.3.3. Подробнее о стандартном преобразовании

Имеется пять видов стандартных преобразований, а именно:

1.преобразования целых типов: приведение от целого типа или перечисления к любому другому целому типу (исключая трансформации, которые выше были отнесены к категории расширения типов);

2.преобразования типов с плавающей точкой: приведение от любого типа с плавающей точкой к любому другому типу с плавающей точкой (исключая трансформации, которые выше были отнесены к категории расширения типов);

3.преобразования между целым типом и типом с плавающей точкой: приведение от любого типа с плавающей точкой к любому целому типу или наоборот;

4.преобразования указателей: приведение целого значения 0 к типу указателя или трансформация указателя любого типа в тип void*;

5.преобразования в тип bool: приведение от любого целого типа, типа с плавающей точкой, перечислимого типа или указательного типа к типу bool.

Вот несколько примеров:

extern void print( void* ); extern void print( double );

int main() { int i;

print( i ); // соответствует print( double );

//i подвергается стандартному преобразованию из int

вdouble

print( &i ); // соответствует print( void* );

//&i подвергается стандартному преобразованию

//из int* в void*

return 0;

}

Преобразования, относящиеся к группам 1, 2 и 3, потенциально опасны, так как целевой тип может и не обеспечивать представления всех значений исходного. Например, с помощью float нельзя адекватно представить все значения типа int. Именно по этой причине трансформации, входящие в эти группы, отнесены к категории стандартных

int i;

void calc( float ); int main() {

calc( i ); // стандартное преобразование между целым типом и типом

с

// плавающей точкой потенциально опасно в зависимости от // значения i

return 0;

преобразований, а не расширений типов.

}

При вызове функции calc() применяется стандартное преобразование из целого типа int в тип с плавающей точкой float. В зависимости от значения переменной i может оказаться, что его нельзя сохранить в типе float без потери точности.

Предполагается, что все стандартные изменения требуют одного объема работы. Например, преобразование из char в unsigned char не более приоритетно, чем из char в double. Близость типов не принимается во внимание. Если две устоявших функции требуют для установления соответствия стандартной трансформации фактического аргумента, то вызов считается неоднозначным и помечается компилятором как ошибка.

extern void

manip( long );

Например, если даны две перегруженные функции: extern void manip( float );

то следующий вызов неоднозначен:

int main() {

manip( 3.14 ); // ошибка: неоднозначность

// manip( float ) не лучше, чем manip( int )

return 0;

}

Константа 3.14 имеет тип double. С помощью того или иного стандартного преобразования соответствие может быть установлено с любой из перегруженных функций. Поскольку есть две трансформации, приводящие к цели, вызов считается неоднозначным. Ни одно преобразование не имеет преимущества над другим. Программист может разрешить неоднозначность либо путем явного приведения типа:

manip ( static_cast<long>( 3.14 ) ); // manip( long )

либо используя суффикс, обозначающий, что константа принадлежит к типу float:

manip ( 3.14F ) ); // manip( float )

Вот еще несколько примеров неоднозначных вызовов, которые помечаются как ошибки,

extern void farith( unsigned int ); extern void farith( float );

int main() {

// каждый из последующих вызовов

неоднозначен

farith( 'a' );

// аргумент

имеет тип char

farith( 0 );

// аргумент

имеет тип int

farith( 2uL );

// аргумент имеет тип unsigned

long

// аргумент имеет тип double

farith( 3.14159 );

farith( true );

// аргумент имеет тип bool

поскольку соответствуют нескольким перегруженным функциям:

}

Стандартные преобразования указателей иногда противоречат интуиции. В частности, значение 0 приводится к указателю на любой тип; полученный таким образом указатель называется нулевым. Значение 0 может быть представлено как константное выражение

void set(int*);

int main() {

//преобразование указателя из 0 в int* применяется к аргументам

//в обоих вызовах

set( 0L ); set( 0x00 ); return 0;

целого типа:

}

Константное выражение 0L (значение 0 типа long int) и константное выражение 0x00 (шестнадцатеричное целое значение 0) имеют целый тип и потому могут быть преобразованы в нулевой указатель типа int*.

Но поскольку перечисления не относятся к целым типам, элемент, равный 0, не

enum EN { zr = 0 };

приводим к типу указателя:

set( zr ); // ошибка: zr нельзя преобразовать в тип int*

Вызов функции set() является ошибкой, так как не существует преобразования между значением zr элемента перечисления и формальным параметром типа int*, хотя zr равно 0.

Следует отметить, что константное выражение 0 имеет тип int. Для его приведения к типу указателя требуется стандартное преобразование. Если в множестве перегруженных функций есть функция с формальным параметром типа int, то именно в ее пользу будет

void print( int ); void print( void * );

void set( const char * ); void set( char * );

int main ()

{

// вызывается

print( 0

);

set( 0

print( int );

);

// неоднозначность

return

0;

 

разрешена перегрузка в случае, когда фактический аргумент равен 0:

}

При вызове print(int) имеет место точное соответствие, тогда как для вызова print(void*) необходимо приведение значения 0 к типу указателя. Поскольку соответствие лучше преобразования, для разрешения этого вызова выбирается функция print(int). Обращение к set() неоднозначно, так как 0 соответствует формальным параметрам обеих перегруженных функций за счет применения стандартной трансформации. Раз обе функции одинаково хороши, фиксируется неоднозначность.

Последнее из возможных преобразований указателя позволяет привести указатель любого типа к типу void*, поскольку void* – это родовой указатель на любой тип данных. Вот несколько примеров: