Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы.rtf
Скачиваний:
119
Добавлен:
02.09.2019
Размер:
946.18 Кб
Скачать

2. Электромагнитные волны и их свойства. Принцип радиосвязи. Модуляция, детектирование. Изобретение радио, современные средства связи.

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Характеристики электромагнитного излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.[1] В большинстве случаев (обычно) скорость — и групповая, и фазовая — распространения электромагнитного излучения в веществе отличается от таковых в вакууме очень незначительно (на доли процента; см.: Показатель преломления).

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий[2]; в соответствии с современными представлениями (Стандартная модель) при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной[3] из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

• наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

• электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Принципы радиосвязи

Радиосвязь, электросвязь посредством радиоволн. Для осуществления Радиосвязи в пункте, из которого ведётся передача сообщений (радиопередача), размещают радиопередающее устройство, содержащее радиопередатчик и передающую антенну, а в пункте, в котором ведётся приём сообщений (радиоприём), - радиоприёмное устройство, содержащее приёмную антенну и радиоприёмник. Генерируемые в передатчике гармонические колебания с несущей частотой, принадлежащей какому-либо диапазону радиочастот, подвергаются модуляции в соответствии с передаваемым сообщением. Модулированные радиочастотные колебания представляют собой радиосигнал. От передатчика радиосигнал поступает в передающую антенну, посредством которой в окружающем антенну пространстве возбуждаются соответственно модулированные электромагнитные волны. Распространяясь, радиоволны достигают приёмной антенны и возбуждают в ней электрические колебания, которые поступают далее в радиоприёмник. Принятый т. о. радиосигнал очень слаб, т.к. в приёмную антенну попадает лишь ничтожная часть излученной энергии. Поэтому радиосигнал в радиоприёмнике поступает в электронный усилитель, после чего он подвергается демодуляции, или детектированию; в результате выделяется сигнал, аналогичный сигналу, которым были модулированы колебания с несущей частотой в радиопередатчике. Далее этот сигнал (обычно дополнительно усиленный) преобразуется при помощи соответствующего воспроизводящего устройства в сообщение, адекватное исходному.

В месте приёма на радиосигнал могут накладываться электромагнитные колебания от посторонних источников радиоизлучений, способные помешать правильному воспроизведению сообщения и называемые поэтому помехами радиоприёму. Неблагоприятное влияние на качество радиосвязи могут оказывать также изменение во времени затухания радиоволн на пути распространения от передающей антенны к приёмной и распространение радиоволн одновременно по двум или нескольким траекториям различной протяжённости; в последнем случае электромагнитное поле в месте приёма представляет собой сумму взаимно смещенных во времени радиоволн, интерференция которых также вызывает искажения радиосигнала. Поэтому и эти явления относят к категории помех радиоприёму. Их влияние на приём радиосигналов особенно велико при связи на больших расстояниях. Широкое распространение радиосвязи и использование радиоволн в радиолокации, радионавигации и др. областях техники потребовали обеспечения одновременного функционирования без недопустимых взаимных помех различных систем и средств, использующих радиоволны, - обеспечения их электромагнитной совместимости.

Распространение радиоволн в открытом пространстве делает возможным в принципе приём радиосигналов, передаваемых по линиям радиосвязи, лицами, для которых они не предназначены (радиоперехват, радиоподслушивание); в этом - недостаток радиосвязи по сравнению с электросвязью по кабелям, радиоволноводам и др. закрытым линиям. Тайна телефонных переговоров и телеграфных сообщений, предусматриваемая соответствующими правилами международными соглашениями, обеспечивается в необходимых случаях применением автоматических средств засекречивания радиосигналов (кодирование и др.).

История радиосвязи

Попытки осуществить радиосвязь предпринимал ещё Т. А. Эдисон в 80-е гг. 19 в. (им получен соответствующий патент), до открытия в 1888 электромагнитных волн Г. Герцем; хотя работы Эдисона не имели практического успеха, они способствовали появлению др. работ, направленных на реализацию идеи беспроводной связи. Герцем был создан искровой излучатель электромагнитных волн, который (с последующими различными усовершенствованиями) в течение нескольких десятилетий оставался наиболее распространённым в радиосвязи видом радиопередатчика. Возможность и основные принципы радиосвязи были подробно описаны У. Круксом в 1892, но в то время ещё не предвиделось скорой реализации этих принципов. Развитие радиосвязи началось после того, как в 1895 А. С. Поповым, а годом позже Г. Маркони были созданы чувствительные приёмники, вполне пригодные для осуществления сигнализации без проводов, т. е. для радиосвязи. Первая публичная демонстрация Поповым работы созданной им радиоаппаратуры и беспроводной передачи сигналов с её помощью состоялась 7 мая 1895, что даёт основание считать эту дату фактическим днём появления Радиосвязи.

Приёмник Попова не только оказался пригодным для радиосвязи, но и (с некоторыми дополнительными узлами) был впервые успешно применен им в том же 1895 для автоматической записи грозовых разрядов, чем было положено начало радиометеорологии. В странах Западной Европы и США была развёрнута активная деятельность по использованию радиосвязи в коммерческих целях. Маркони в 1897 зарегистрировал в Англии Компанию беспроводного телеграфирования и сигнализации, в 1899 основал Американскую компанию беспроводной и телеграфной связи, а в 1900 - Международную компанию морской связи. В декабре 1901 им была осуществлена радиотелеграфная передача через Атлантический океан. В 1902 в Германии производство оборудования для радиосвязи организовал А. Слаби (совместно с Г. Арко), а также К. Ф. Браун. Очевидное огромное значение радиосвязи для военных флотов и для морского транспорта, а также гуманистическая роль радиосвязи (при спасании людей с кораблей, потерпевших крушение) стимулировали развитие её во всём мире. На 1-й Международной административной конференции в Берлине в 1906 с участием представителей 29 стран были приняты регламент радиосвязи и международная конвенция, вступившая в силу с 1 июля 1908. В регламенте было зафиксировано распределение радиочастот между разными службами радиосвязи (см. ниже). Было основано Бюро регистрации радиостанций и установлен международный сигнал бедствия SOS. На международной конференции в Лондоне в 1912 было несколько изменено распределение частот, уточнён регламент и учреждены новые службы: радиомаячная, передачи сводок погоды и передачи сигналов точного времени. По решению радиоконференции 1927 было запрещено применение искровых радиопередатчиков, создававших излучение в широком спектре частот и препятствовавших тем самым эффективному использованию радиочастот; искровые передатчики были оставлены только для передачи сигналов бедствия, поскольку широкий спектр излучения радиоволн увеличивает вероятность их приёма. С 1915 до 50-х гг. аппаратура для радиосвязи развивалась главным образом на основе электронных ламп; затем были внедрены транзисторы и др. полупроводниковые приборы.

До 1920 в радиосвязь применялись преимущественно волны длиной от сотен м до десятков км. В 1922 радиолюбителями было открыто свойство декаметровых (коротких) волн распространяться на любые расстояния благодаря преломлению в верхних слоях атмосферы и отражению от них. Вскоре такие волны стали основным средством осуществления дальней радиосвязи Для приёма передаваемых т. о. сигналов, приходящих с больших расстояний, служат чувствительные приёмники и большие, сравнительно остронаправленные антенные сооружения, занимающие большую территорию, т. н. антенное поле (подобные же сооружения используются и для излучения декаметровых волн). Для ослабления радиопомех приёмное оборудование размещается в стороне от городов и вдали от радиопередатчиков, на специальных приёмных радиоцентрах. Радиопередающие устройства также группируются - на передающих радиоцентрах. Те и другие связаны с находящимся в городе центральным телеграфом, откуда поступают передаваемые и куда транслируются принимаемые сигналы.

В 30-е гг. были освоены метровые, а в 40-е - дециметровые и сантиметровые волны, распространяющиеся в основном прямолинейно, не огибая земной поверхности (т. е. в пределах прямой видимости), что ограничивает прямую связь на этих волнах расстоянием в 40-50 км. Поскольку ширина диапазонов частот, соответствующих этим длинам волн, - от 30 Мгц до 30 Ггц - в 1000 раз превышает ширину всех диапазонов частот ниже 30 Мгц (волны длиннее 10 м), то они позволяют передавать огромные потоки информации, осуществляя многоканальную связь. В то же время ограниченная дальность распространения и возможность получения острой направленности с антенной несложной конструкции позволяют использовать одни и те же длины волн во множестве пунктов без взаимных помех. Передача на значительные расстояния достигается применением многократной ретрансляции в линиях радиорелейной связи или с помощью спутников связи, находящихся на большой высоте (около 40 тыс. км) над Землёй . Позволяя вести на больших расстояниях одновременно десятки тысяч телефонных разговоров и передавать десятки телевизионных программ, радиорелейная и спутниковая связь по своим возможностям являются несравненно более эффективными, чем обычная дальняя радиосвязь на декаметровых волнах, значимость которой соответственно уменьшается (за ней, например, остаётся роль полезного резерва, а также роль средства связи на направлениях с малыми потоками информации).

При большой мощности радиопередатчика (десятки квт) радиосвязь на метровых волнах в узкой полосе частот (несколько кгц) возможна на расстояниях ~ 1000 км за счёт рассеяния волн в ионосфере. Пользуются также отражением радиоволн от ионизованных следов метеоров, сгорающих в верхних слоях атмосферы (см. Метеорная радиосвязь), но при этом передача информации идёт с перерывами, что не позволяет осуществлять телефонных переговоры.

Малая часть энергии излучения на дециметровых и сантиметровых волнах может также распространяться за пределы горизонта (на расстояния в сотни км) благодаря электрической неоднородности тропосферы. Это позволяет при сравнительно большой мощности передатчиков (порядка нескольких квт) строить линии радиорелейной связи с расстоянием между промежуточными станциями в 200-300 км и более (при сужении частотного спектра излучения, т. е. уменьшении объёма передаваемой информации.

Линии радиосвязи используются для передачи телефонных сообщений, телеграмм, потоков цифровой информации и факсимиле, а также и для передачи телевизионных программ (обычно на метровых и более коротких волнах). По назначению и дальности действия различают международные и внутригосударственные линии радиосвязи. Внутригосударственные линии делятся на магистральные (между Москвой и краевыми и областными центрами, а также между последними) и зоновые (внутриобластные и внутрирайонные). Развитие линий радиосвязи планируется с учётом вхождения радиосвязи в Единую автоматизированную систему связи страны.

Организационно-технические мероприятия и средства для установления радиосвязи и обеспечения её систематического функционирования образуют службы радиосвязи, различаемые по назначению, дальности действия, структуре и др. признакам. В частности, существуют службы: наземной и космической радиосвязи (к космической радиосвязи относят все виды радиосвязи с использованием одного или нескольких спутников или иных космических объектов); фиксированной (между определёнными пунктами) и подвижной (между подвижной и стационарной радиостанциями или между подвижными радиостанциями); радиовещания и телевидения. Для производственных и специальных служебных надобностей имеются ведомственные службы радиосвязи в некоторых министерствах и организациях (например, в гражданской авиации, на ж/д., морском и речном транспорте, в службах пожарной охраны, милиции, медицинской службе городов), а также внутрипроизводственная связь на промышленных и с.-х. предприятиях, в некоторых учреждениях и т.д. Большое значение имеет радиосвязь в вооружённых силах.

Модуляция и детектирование

С момента изобретения радио Поповым прошло некоторое время, когда люди захотели вместо телеграфных сигналов, состоящих из коротких и длинных сигналов, передавать речь и музыку. Так была изобретена радиотелефонная связь. Рассмотрим основные принципы работы такой связи. При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн. Однако в действительности такой способ передачи неосуществим. Дело в том, что колебания новой частоты представляют собой сравнительно медленные колебания, а электромагнитные волны низкой (звуковой) частоты почти совсем не излучаются. Для преодоления этого препятствия была разработана модуляция и детектирование рассмотрим их подробно.

Модуляция

Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной. Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе. Для передачи звука эти высокочастотные колебания изменяют, или как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты. Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний. Этот способ называют амплитудной модуляцией. Без модуляции мы в лучшем случае можем контролировать, работает станция или молчит. Без модуляции нет ни телеграфной, ни телефонной, ни телевизионной передачи. Амплитудная модуляция высокочастотных колебаний достигается специальным воздействием на генератор незатухающих колебаний.

В частности, модуляцию можно осуществить, изменяя на колебательном контуре напряжение, создаваемое источником. Чем больше напряжение на контуре генератора, тем больше энергии поступает за период от источника в контур. Это приводит к увеличению амплитуды колебаний в контуре. При уменьшении напряжения энергия, поступающая в контур, также уменьшается. Поэтому уменьшается и амплитуда колебаний в контуре. В самом простом устройстве для осуществления амплитудной модуляции включают последовательно с источником постоянного напряжения дополнительный источник переменного напряжения низкой частоты.

Этим источником может быть, например, вторичная обмотка трансформатора, если по его первичной обмотке протекает ток звуковой частоты. В результате амплитуда колебаний в колебательном контуре генератора будет изменяться в такт с изменениями напряжения на транзисторе. Это и означает, что высокочастотные колебания модулируются по амплитуде низкочастотным сигналом. Кроме амплитудной модуляции, в некоторых случаях применяют частотную модуляцию — изменение частоты колебаний в соответствии с управляющим сигналом. Ее преимуществом является большая устойчивость по отношению к помехам.

Детектирование

В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания. Такой процесс преобразования сигнала называют детектированием. Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика. После усиления колебания низкой частоты могут быть превращены в звук. Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен непосредственно вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо сначала из высокочастотных модулированных колебаний выделить сигнал звуковой частоты. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью - детектор. Таким элементом может быть электронная лампа (вакуум¬ный диод) или полупроводниковый диод.

Рассмотрим работу полупроводникового детектора. Пусть этот прибор включен в цепь последовательно с источником модулированных колебаний и нагрузкой. Ток в цепи будет течь преимущественно в одном направлении. В цепи будет течь пульсирующий ток. Этот пульсирующий ток сглаживается с помощью фильтра. Простейший фильтр представляет собой конденсатор, присоединенный к нагрузке. Фильтр работает так. В те моменты времени, когда диод пропускает ток, часть его проходит через нагрузку, а другая часть ответвляется в конденсатор, заряжая его. Разветвление тока уменьшает пульсации тока, проходящего через нагрузку. За¬то в промежутке между импульсами, когда диод заперт, конденсатор частично разряжается через нагрузку. Поэтому в интервале между импульсами ток через нагрузку течет в ту же сторону. Каждый новый импульс подзаряжает конденсатор. В результате этого через нагрузку течет ток звуковой частоты, форма колебаний которого почти точно воспроизводит форму низкочастотного сигнала на передающей станции.

Билет 13.