Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы.rtf
Скачиваний:
119
Добавлен:
02.09.2019
Размер:
946.18 Кб
Скачать

2. Самоиндукция. Индуктивность. Энергия магнитного поля.

Самоиндукция

Самоиндукция - , возбуждение электродвижущей силы индукции (эдс) в электрической цепи при изменении электрического тока в этой цепи; частный случай электромагнитной индукции. Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока; коэффициент пропорциональности называется индуктивностью. ;)

Индукти́вность — коэффициент пропорциональности между магнитным потоком (создаваемым током какого-либо витка при отсутствии намагничивающих сред, например, в воздухе) и величиной этого тока[1][2] [3].

Если в проводящем контуре течёт ток, то ток создаёт магнитное поле[3]. Величина магнитного потока, пронизывающего одновитковый контур, связана с величиной тока следующим образом[3]:

Энергия магнитного поля.

Выясним, почему же для создания тока необходимо затратить энергию, т.е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создаётся в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I , источник тока должен совершить работу против сил вихревого поля. Эта работа идёт на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасённая током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Записать выражение для энергии тока I, текущего по цепи с индуктивностью L (т.е. для энергии магнитного поля тока), можно на основании аналогии между инерцией и самоиндукцией.

Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль скорости тела в электродинамике играет сила тока I как величина, характеризующая движение электрических зарядов.

Если это так, то энергию тока W можно считать величиной, подобной кинетической энергии тела mV2/2 в механике, и записать в виде:

W=LI2/2

Именно такое выражение для энергии тока и получается в результате расчётов.

Энергия тока выражена через геометрическую характеристику проводника L и силу тока в нём I. Но эту же энергию можно выразить через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т.е. энергия единицы объёма) пропорциональна квадрату магнитной индукции, подобно тому, как плотность энергии электрического поля пропорциональна квадрату напряжённости электрического поля.

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Билет 10.

1. Распространение колебаний в упругой среде. Поперечные и продольные волны. Скорость волны. Длина волны.

Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конеч¬ной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, увлекаемые частицы будут отставать по фазе от тех частиц, которые их увлекают.

При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды. Среда рассматривается как сплошная, т.е. непрерывно распреде¬ленная в пространстве и обладающая упру¬гими свойствами.

Итак, колеблющееся тело, помещенное в упругую среду, является источником колебаний, распространяющихся от него во все стороны. Процесс распространения колебаний в среде называется волной.

При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице передается лишь состояние колебательного движения и энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения) и продольными (сгущение и разрежение частиц среды происходит в направлении распространения).

Граница, отделяющая колеблющиеся частицы от частиц еще не начавших колебаться, называется фронтом волны.

В однородной среде направление распространения перпендикулярно фронту волны (рис. 5.1).

Рис. 5.1

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l:

,

(5.1.1)

где υ – скорость распространения волны, – период, ν – частота. Отсюда скорость распространения волны можно найти по формуле:

.

(5.1.2)

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченную волновым процессом, т.е. волновых поверхностей бесконечное множество. Волновые поверхности остаются неподвижными (они проходят через положение равновесия частиц, колеблющихся в одинаковой фазе). Волновой фронт только один, и он все время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях волновые поверхности имеют форму плоскости или сферы, соответственно волны называются плоскими или сферическими. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, в сферической волне – систему концентрических сфер.

Скорость волны — скорость перемещения гребня волны в направлении ее распространения.

Длина волны — расстояние между двумя ближайшими точками Волны, находящимися в одинаковой фазе