Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ ТЕПЛОТЕХ.doc
Скачиваний:
64
Добавлен:
24.08.2019
Размер:
1.55 Mб
Скачать

Основные термодинамические процессы идеального газа

1). Изохорный процесс (Рис.4.1)

Такой процесс может совершаться рабочим телом, находящимся в цилиндре при неподвижном поршне, если к рабочему телу подводится теплота от источника теплоты (см. рис. 4.1) или отводится теплота от рабочего тела к холодильнику. При изохорном процессе выполняется условие dv=0 или v=const. Уравнение изохорного процесса получим из уравнения состояния идеального газа при v=const. В pv-координатах график процесса представляет собой прямую линию, параллельную оси p. Изохорный процесс может протекать с повышением давления (процесс 1-2) и с понижением (процесс 1-2’).

Рис. 4.1. График изохорного процесса в p-v координатах

Запишем для точек 1 и 2 уравнения состояния: p1·v=R·T1; p2·v=R·T2. Следовательно, для изохорного процесса




Приращение внутренней энергии газа





Работа газа





так как dv=0.

Энтальпия газа




Энтропия

То есть



2). Изобарный процесс (Рис.4.2)

В p-v координатах график процесса представляет собой прямую линию параллельную оси v (рис. 4.2). Изобарный процесс может протекать с увеличением объёма (процесс 1-2) и с уменьшением (процесс 1-2’). Запишем для точек 1 и 2 уравнения состояния: p·v1=R·T1; p·v2=R·T2.

Рис. 4.2. График изобарного процессав p-v координатах

Следовательно, для изобарного процесса





Приращение внутренней энергии

Работа газа

Так как p·v2=R·T2, а p·v1=R·T1, то l=R·(T2-T1). Следовательно, газовая постоянная имеет определённый физический смысл: это работа 1 кг газа в изобарном процессе при изменении температуры на один градус.

В изобарном процессе q=cp·(T2-T1). В соответствии с первым законом термодинамики для изобарного процесса можно записать dq=du+p·dv= du+d(p·v)=di. Поэтому в изобарном процессе di=q=cp·(T2-T1). Из соотношений, характеризующих изобарный процесс, вытекает известное уравнение Майера.

Так как dq=cp·dT=cv·dT+dl=cv·dT+R·dT, то R=cp-cv.

Можно показать, что в изобарном процессе энтропия газа



3). Изотермический процесс (Рис.4.3)

В p-v координатах график процесса изображается равнобокой гиперболой (рис. 4.3). Изотермический процесс может протекать как с увеличением объёма (процесс 1-2), так и с уменьшением объёма (процесс 1-2’).

Рис. 4.3. График изотермического процесса в p-v координатах

Запишем для точек 1 и 2 уравнения состояния p1·v1=R·T; p2·v2=R·T. Следовательно, для изотермического процесса p1·v1=p2·v2=const.

Приращение внутренней энергии газа




Работа

(




Теплота, подводимая в процессе




Изменение энтальпии газа Δi=Δu+Δ(p·v)=0.

Изменение энтропии газа




4). Адиабатный процесс (Рис.4.4)

Рис. 4.4. Взаимное расположение адиабаты 1 и изотермы 2 идеального газа в p, v-диаграмме

В данном процессе не подводится и не отводится тепло, т.е. q =0.

Адиабатный процесс – это процесс, при котором рабочее тело не обменивается теплотой с окружающей средой (dq=0). Для получения графика процесса в p-v координатах выполним некоторые преобразования.

В соответствии с первым законом термодинамики dq=cv·dT+p·dv=c·dT, где с – теплоёмкость термодинамического процесса. Тогда можно записать, что



Продифференцируем уравнение состояния идеального газа и запишем



Так как R=cp-cv, то



Выполним преобразования выражения







Разделим выражение на (cv-c)·p·v и получим:



Обозначим , тогда











Следовательно



В адиабатном процессе dq=0, то есть c·dT=0. Поэтому c=0. Значит в адиабатном процессе . Эту величину принято обозначать буквой и называть показателем адиабаты.

Поэтому в p-v координатах адиабатный процесс изображается неравнобокой гиперболой vk·p=const (рис. 4.4). Так как k>1, то адиабата проходит круче гиперболы. Адиабатный процесс может протекать как с увеличением объёма (процесс 1-2), так и с уменьшением объёма (процесс 1-2’).

Рис. 4.4. График адиабатного

процесса в p-v координатах

Запишем для точек 1 и 2 уравнения состояния p1·v1=R·T1; p2·v2=R·T2. Так как в адиабатном процессе p1·v1k=p2·v2k, то , .

Приращение внутренней энергии газа  .

Так как , а , то , а .

Поэтому





Работа газа в адиабатном процессе выполняется за счёт его внутренней энергии. Так как в адиабатном процессе отсутствует обмен теплотой с окружающей средой, то в соответствии с первым законом термодинамики имеем l+Δu=0 или l=-Δu. Поэтому





Изменение энтальпии газа в адиабатном процессе может быть определено исходя из следующих соображений:



Так как , то в итоге получим



Энтропия газа в адиабатном процессе не изменяется, так как dq=0. Поэтому в T-s координатах адиабатный процесс изображается прямой линией, параллельной оси температур.