Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИОЛОГИЯ ТКАНЕЙ.docx
Скачиваний:
24
Добавлен:
24.08.2019
Размер:
232.78 Кб
Скачать

Биоэлектрические явления в возбудимых тканях. Природа возбуждения

  1. Возбуждение представляет собой сложную совокупность фи­зических, химических и физико-химических процессов, в резуль­тате которых происходит быстрое и кратковременное изменение электрического потенциала мембраны.Первые исследования электрической активности живых тканей были проведены Л. Гальвани. Он обратил внимание на сокращение мышц препарата задних лапок лягушки, подвешенной на медном крючке, при соприкосновении с железными перилами балкона (первый опыт Гальвани). На основании этих наблюдений им был сделал вывод, что сокращение лапок вызвано «животным электричеством», которое возникает в спинном мозге и передает­ся по металлическим проводникам (крючку и перилам) к мыш­цам.

  1. Физик А. Вольта, повторив этот опыт, пришел к другому за­ключению. Источником тока, по его мнению, является не спин­ной мозг и «животное электричество», а разность потенциалов, образующаяся в месте контакта разнородных металлов — меди и железа, а нервно-мышечный препарат лягушки является лишь проводником электричества.

  2. В ответ на эти возражения Л. Галь­вани усовершенствовал опыт, исключив из него металлы. Он пре­парировал седалищный нерв вдоль бедра лапки лягушки, затем набрасывал нерв на мышцы голени, что вызывало сокращение мышцы (второй опыт Гальвани), тем самым доказав существова­ние «животного электричества».

  3. Позднее Дюбуа-Реймоном было установлено, что поврежден­ный участок мышцы имеет отрицательный заряд, а неповрежден­ный участок — положительный. При набрасывании нерва между поврежденным и неповрежденным участками мышцы возникает ток, который раздражает нерв и вызывает сокращение мышцы Этот ток был назван током покоя, или током повреждения. Так бы­ло показано, что наружная поверхность мышечных клеток заря­жена положительно по отношению к внутреннему содержимому. В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, коте рая называется мембранным потенциалом (МП), или, если это клетка возбудимой ткани, — потенциалом покоя. Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной, то, принимая потенциал наружного раствора за нуль МП записывают со знаком «минус». Его величина у разных клеток колеблется от минус 30 до минус 100 мВ.

Первая теория возникновения и поддержания мембранног потенциала была разработана Ю.Бернштейном (1902). Исходя и того, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов, он пока зал, что величину мембранного потенциала можно определить используя формулу Нернста

где Е — разность потенциалов между внутренней и наруж­ной сторонами мембраны; £ — равновесный потенциал для ио­нов калия; Rгазовая постоянная; Т — абсолютная температура; л — валентность иона; Fчисло Фарадея; [К*]вд — внутренняя и [К*] — наружная концентрация ионов калия.

В 1949—1952 гг. А.Ходжкин, Э.Хаксли, Б.Катц создали со­временную мембранно-ионную теорию, согласно которой мем­бранный потенциал обусловлен не только концентрацией ионов калия, но и натрия и хлора, а также неодинаковой проницаемос­тью для этих ионов мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30 —50 раз больше ионов калия, в 8—10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Проницаемость мембраны для ио­нов обусловлена ионными каналами, макромолекулами белка, пронизывающими липидный слой. Одни каналы открыты посто­янно, другие (потенциалозависимые) открываются и закрыва­ются в ответ на изменения МП. Потенциал зависимые каналы подразделяются на натриевые, калиевые, кальциевые и хлор­ные. В состоянии физиологического покоя мембрана нервных клеток в 25 раз более проницаема для ионов калия, чем для ио­нов натрия.

Таким образом, согласно обновленной мембранной теории асимметричное распределение ионов по обе стороны мембраны и связанное с этим создание и поддержание мембранного потенци­ала обусловлено как избирательной проницаемостью мембраны для различных ионов, так и их концентрацией но обе стороны от мембраны, а более точно величину мембранного потенциала можно рассчитать по формуле:

где PK, PN4, PCl — проницаемость для ионов калия, натрия и хлора.

Поляризация мембраны в покое объясняется наличием откры­тых калиевых каналов и трансмембранным градиентом концентра­ций калия, что приводит к выходу части внутриклеточного калия в окружающую клетку среду, т.е. к появлению положительного за­ряда на наружной поверхности мембраны. Органические анио­ны — крупномолекулярные соединения, для которых мембрана клетки непроницаема, создают на внутренней поверхности мемб­раны отрицательный заряд. Поэтому чем больше разница концент­раций калия по обе стороны от мембраны, тем больше его выходит и тем выше значения МП. Переход ионов калия и натрия через мембрану по их концентрационному градиенту в конечном итоге должен был бы привести к выравниванию концентрации этих ио­нов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране имеются на­трий-калиевые насосы, которые обеспечивают выведение из клет­ки ионов натрия и введение в нее ионов калия, работая с затратой энергии. Они принимают и прямое участие в создании МП, так как за единицу времени ионов натрия выводится из клетки больше, чем вводится калия (в соотношении 3:2), что обеспечивает постоян­ный ток положительных ионов из клетки. То что выведение натрия зависит от наличия метаболической энергии, доказывается тем, что под действием динитрофенола, который блокирует метаболи­ческие процессы, выход натрия снижается примерно в 100 раз. Та­ким образом, возникновение и поддержание мембранного потен­циала обусловлено избирательной проницаемостью мембраны клетки и работой натрий-калиевого насоса.

Изменения мембранного потенциала. Пороговые и подпороговые раздражители

Если раздражать нейрон через электрод, находящийся в цито­плазме, кратковременными импульсами деполяризующего элект­рического тока различной величины, то, регистрируя через другой электрод изменения мембранного потенциала, можно наблюдать следующие биоэлектрические реакции: электротонический потенциал, локальный ответ и потенциал действия. Если на­носятся раздражения, величина которых не превышает 0,5 вели­чины порогового раздражения, то деполяризация мембраны на­блюдается только во время действия раздражителя. Это пассивная электротоническая деполяризация (электротонический потенци­ал). Развитие и исчезновение электротонического потенциала происходит по экспоненте и определяется параметрами раздража­ющего тока, а также свойствами мембраны (ее сопротивлением и емкостью). Во время развития электротонического потенциала проницаемость мембраны для ионов практически не изменяется.

Локальный ответ. При увеличении амплитуды подпороговых раздражений от 0,5 до 0,9 пороговой величины развитие деполя­ризации мембраны происходит не прямолинейно, а по S-образ-ной кривой. Деполяризация продолжает нарастать и после пре­кращения раздражения, а затем сравнительно медленно исчеза­ет. Этот процесс получил название локального ответа. Локальный ответ имеет следующие свойства: 1) возникает при действии под­пороговых раздражителей; 2) находится в градуальной зависимо­сти от силы стимула (не подчиняется закону «все или ничего»); ло­кализуется в месте действия раздражителя и не способен к рас­пространению на большие расстояния; 3) может распространять­ся лишь локально, при этом его амплитуда быстро уменьшается; 4) локальные ответы способны суммироваться, что приводит к увеличению деполяризации мембраны. В период развития ло­кального ответа возрастает поток ионов натрия в клетку, что по­вышает ее возбудимость. Локальный ответ является эксперимен­тальным феноменом, однако по перечисленным выше свойствам он близок к таким явлениям, как процесс местного нераспростра-няющегося возбуждения и возбуждающего постсинаптического потенциала (ВПСП). который возникает под влиянием деполяри­зующего действия возбуждающих медиаторов.