Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
razdel2.doc
Скачиваний:
6
Добавлен:
21.08.2019
Размер:
1.14 Mб
Скачать

83

2. Геометрические измерения.

В оптических и оптико-электронных измерительных приборах применяют визуальную, фотографическую и оптико-электронную регистрацию измерительной информации.

Визуальная регистрация обеспечивает достаточно высокую точность при простой схемной реализации, удобство и наглядность при начальной установке и юстировке, надежность и долговечность прибора. Однако она применима только в видимой области спектра, требует длительного времени для снятия отсчета, подвержена ошибкам оператора и исключает автоматизацию процесса измерения.

Фотографическая регистрация позволяет обрабатывать и документировать одновременно большой объем измерительной информации в видимой, ближней УФ и ближней ИК областях спектра (спектрограф) с достаточно высокой точностью, но требует применения специальных процессов и технических средств для обработки фотоматериалов, занимает много времени, усложняет автоматизацию процесса измерения.

Оптико-электронная регистрация применяется во всех областях спектра, обладает высокой чувствительностью, точностью, очень малой постоянной времени, легко автоматизируется и компьютеризируется. Однако требует сложных электронных систем и вызывает трудности при начальной установке и юстировке.

Перспективным и широко применяемым в настоящее время методом является объединение в одном приборе визуальной и оптико-электронной регистрации. При этом в стадии настройки используется визуальный канал, а для рабочих измерений - оптико-электронный.

2.1. Визуальные геометрические измерения.

2.1.1. Глаз как элемент измерительного устройства. Метрологические характеристики зрения.

При работе глаза совместно с измерительными приборами проявляются все его основные свойства: аккомодация, адаптация, разрешающая способность, контрастная чувствительность и др.

Аккомодация - свойство глаза рассматривать предметы, находящиеся на различных расстояниях. Аккомодация зависит от возраста . Для среднего (нормального) глаза величина аккомодации принимается 0-4D или   250 мм. Расстояние 250 мм наиболее удобно для рассматривания предмета без напряжения и называется расстояние наилучшего зрения.

Острота аккомодации - глубина резкого изображения. Для нормального глаза при величине зрачка 2 мм острота аккомодации .

Адаптация - свойство глаза приспосабливаться к различной яркости (уровню освещенности). В зависимости от яркости объекта диаметр зрачка меняется от 0,2 до 8 мм. Темновая адаптация протекает сравнительно медленно. Темновой порог чувствительности достигается через 40-60 мин. после начала пребывания в абсолютной темноте. Световая адаптация происходит за 30 сек.

При измерениях необходимо стремиться к одинаковой освещенности отсчетной шкалы и изображения предмета. Оптимальная освещенность при измерениях составляет 50250 лк.

Контрастная чувствительность - способность глаза улавливать минимальную разность яркости полей сравнения и , расположенных рядом. Контрастная чувствительность зависит от яркости, цвета, формы и других характеристик полей сравнения и составляет 1-2 % при яркости от 5 до 250 кд/ . (Рис.2.1.).

Разрешающая способность (острота зрения) - наименьший угол, под которым раздельно видны два близких предмета. Зависит от диаметра входного

зрачка, освещенности предмета и его формы. Определяется размером колбочек (5 мкм) на сетчатке глаза. (Рис.2.2.).

При уменьшении или увеличении диаметра зрачка глаза от 2 мм разрешающая способность уменьшается. Если диаметр зрачка глаза меньше 1 мм, то разрешающая способность уменьшается из-за дифракции света, а больше 2 мм - в результате влияния сферической и хроматической аберрации и рассеяния света внутри глаза.

Разрешающая способность идеальной оптической системы

(2.1)

Для нормального глаза при освещенности 50…250 лк и диаметре зрачка 2 мм острота зрения составляет .

В особых случаях при рассмотрении одиночных предметов (звезды на небе) острота зрения возрастает до .

Величина поля резкого видения неподвижного глаза равна 4 или 17 мм в пространстве предметов на расстоянии наилучшего видения ( мм).

Все оптические измерения сводятся к поперечным и продольным наведениям перекрестия или другого отсчетного устройства на шкалу или контролируемый объект и снятию отсчетов со шкал. Точность наведения определяется свойствами глаза, параметрами оптической системы , типом шкалы и формой контролируемого объекта.

Эмпирически установлено, что при поперечной установке достигается следующая точность: (рис.2.3)

  • наведение сетки на объект произвольной формы - (рис.2.3а);

  • наведение индекса на шкалу и нониусная установка - (рис.2.3б)

  • биссекторная установка - (рис.2.3в).

При работе глаза совместно с оптической системой, увеличение которой равно Г раз больше (ошибка наведения в Г раз меньше).

Чувствительность поперечной наводки оказывается в среднем в 5…6 раз выше разрешающей способности глаза. Это объясняется тем, что понятие разрешающей способности справедливо для двух точечных изображений, построенных на сетчатке и определяется диаметром колбочек.

В горизонтальном направлении центры последующего ряда колбочек сдвинуты, поэтому взаимный сдвиг штрихов распознается еще и тогда, когда расстояние между их изображениями на сетчатке меньше диаметра колбочек.

Наиболее точной является биссекторная установка, при которой используется особое свойство зрения оценивать 0,1-0,05 интервала шкалы в том случае, если видимая длина интервала составляет 1,5-2 мм.

Для размеров штрихов и шкал рекомендуются следующие соотношения (рис.2.4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]