Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие к СНиП 2.04.03-85. Проектирование соору...doc
Скачиваний:
87
Добавлен:
15.08.2019
Размер:
4.17 Mб
Скачать

3. Сооружения для физико-химической очистки сточных вод. Нейтрализация сточных вод

3.1. Кислые и щелочные сточные воды перед сбросом их в промышленную канализацию или водоемы должны быть нейтрализованы до достижения величины рН, равной 6,5-8,5. При нейтрализации сточных вод допускается смешение кислых и щелочных стоков для их взаимонейтрализации:

3.2. Пример расчета взаимной нейтрализации. Исходные данные: кислые сточные воды содержат H2SO4 - 4,7; HCl - 3,8 г/л; щелочные сточные воды содержат NaOH - 3,3; Na2CO3 - 2,9 г/л. Для расчета взаимной нейтрализации концентрации кислот и щелочей надо выразить в г-экв/л.

В кислых сточных водах это составит

Нa2SO4 - 4,7:49 = 0,0958 г-экв/л;

НС1 - 3,8:36,5 = 0,1041 г-экв/л;

итого кислот - 0,2 г-экв/л.

NaOH - 3,3: 40 = 0,0825 г-экв/л;

2СО3 - 2,9: 53 = 0,0547 г-экв/л;

итого щелочей - 0,1372 г-экв/л; где 49; 36,5; 40; 53 грамм-эквиваленты Нa2SO4, HC1, NaOH и Nа2СО3 соответственно.

В результате смешения равных объемов данных сточных вод преобладают кислые стоки: 0,2-0,1372 = 0,0628 г-экв/л. Для их нейтрализации потребуется дополнительно 0,0628 г-экв/л щелочи. Это количество щелочи содержится в 0,46 л щелочной воды, что видно из следующего расчета: в 1 л содержится 0,1372 г-экв/л щелочи, а в Х л содержится 0,0628 г-экв/л щелочи, тогда Х = 0,0628: 0,1372 = 0,46 л щелочной воды.

Следовательно, для получения при взаимной нейтрализации воды с величиной рН = 7 надо смешивать с 1 л кислой воды 1,46 л щелочной воды. Если для расчета взаимной нейтрализации известны величины рН, то пересчет концентрации производится по формулам:

для кислых стоков

pH = - lg , (74)

где Х - концентрация кислоты, г/л; Э - ее эквивалентная масса;

для щелочных стоков

pH = 14+lg , (75)

где X1 - концентрация щелочи, г/л; Э1 - ее эквивалентная масса.

3.3. Пример расчета концентрации НNО3, имеющей величину рН = 2,02.

По формуле (74) произведем следующий расчет:

2,02 = - lg ; 2,02 = - (lgХ - lg63) = - lgX + lg63,

где 63 - эквивалентная масса HNO3; lg 63 = 1,8, тогда 2,02 = - lgX+1,8; lgX = 1,8-2,02 = - 0,22 + 1,78; X = 0,603 HNO3 г/л (0,603 антилогарифм 1,78).

3.4. Пример расчета концентрация NaOH, имеющей величину рН = - 12,77.

По формуле (75) произведем следующий расчет;

12,77 = 4+lg ; 12,77 = 14 +(lgX1-lg40)

где 40 эквивалентная масса NaOH, lg 40 = 1,602, тогда 12,77 = 14+lgX1 - 1,602; lgX1 = 12,77-14+l,602 = 0,372; X1 = 2,36 NaOH г/л (2,36 антилогарифм 0,372).

Непрерывно действующие фильтры, загруженные кусковым мелом, известняком, магнезитом, мрамором, доломитом н другими химическими веществами, могут применяться для нейтрализации соляно-кислых и азотно-кислых сточных вод, а также серно-кислотных, содержащих не более 5 г/л H2SO4 и не содержащих солей тяжелых металлов.

Если нейтрализуемая сточная вода содержит катионы металлов, то доза нейтрализующего реагента рассчитывается как на свободную кислоту, так и на концентрацию металлов. При достижении оптимального значения величины рН-6,5-8,5 основное количество металлов выделяется в осадок в виде соответствующих гидроксидов.

3.5. Расчет количества образующегося осадка производится по формуле (80) СНиП 2.04 03-85

М = (А1 + А2) + А3 + (Е1 + Е2 - 2).

Третий член в данной формуле не учитывается, если его значение отрицательное.

3.6. Объем образующегося осадка рассчитывается по формуле (81) СНиП 2.04.03-85

Wmud = (10.M)/(100-Pmud).

3.7. Пример расчета количества осадка, образующегося при нейтрализации кислых сточных вод, содержащих катионы металлов, производится по формулам (80) и (81) СНиП 2.04.03-85.

Исходные данные. Нейтрализуемая сточная вода содержит 7 г/л FeSO4, и 10,3 г/л H2SO4. Применяемая для нейтрализации известь содержит 50 % активной СаО (A). Расход нейтрализуемой сточной воды qW = 120 м3/сут.

Определяем количество сухого вещества в осадке M по формуле (80) СНиП 2.04.03-85. По реакции FeSO4,+CaO+H2O CaSО4+Fe(OH)2 находим значения A1, A2 и A3:

FeSO4 + СаО + H2О CaSO4 + Fe(ОН)2,

152 66 36 90

7 A1, A2 A3

A1 = (7.56)/152 = 2,6 г/л; A2 = (7.136)/152 = 6,2 г/л;

A3 = (7.90)/152 = 4,1 г/л.

Затем по реакции H2SO4+CaO - CaSО4+H2О находим значения E1 и E2:

H24 + СаО CaSO4, + Н2О

98 66 136

10,3 E1 Е2,

E1 = (l0,3.56)/98 = 5,9 г/л; E2 = 10,3.136/98 = 14,3 г/л.

Найденные значения подставляются в формулу (80) СНиП 2.04.03-85.

М = (2,6 + 6,2) + 4,1 + (5,9 + 14,3 - 2) = 31,1 г/м3.

Определяем объем осадка, образующегося при нейтрализации 1 м3 сточной воды при влажности его 90 % по формуле (81) СНиП 2.04.03-85

Wmud = (1031,1)/(100-90) = 3,l%.

Общее количество влажного осадка будет 31,1.120: 1000 = 4,7 т/сут.

Заметим, что влажность осадка всегда должна быть меньшей или равной 100 % минус количество сухого вещества. Если, например, количество сухого вещества M = 31,1 кг/м3, то влажность осадка не может быть более 96,9%, а всегда равна или меньше этой величины.

Ориентировочное количество осадка, образующегося в зависимости от концентрации кислоты и ионов тяжелых металлов в нейтрализуемой воде и выделяющегося в накопителях, предназначенных для складирования его, может быть принято по следующим данным:

концентрация кислоты и ионов

тяжелых металлов, кг/м3 . . 5 10 15 20 30 40 50

количество осадков, м3, накапливаемых за 1 год, от каждого 1 м3/сут

нейтрализованной воды . . . 33 51 65 76 93 108 118