Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы_BJD.doc
Скачиваний:
13
Добавлен:
06.08.2019
Размер:
389.12 Кб
Скачать

19.1. Физико-гигиеническая характеристика шума

Если из окружающей среды внезапно исчезнут привычные звуки, то человек будет испытывать значительные неудобства, волнение и даже чувство беспричинного страха: ведь люди рождаются и живут в мире звуков. Не следует забывать, что цивилизация достигла высокого уровня развития благодаря способности к общению в форме речи — одного из видов связи с помощью звуков. Тем не менее шум является одним из главных неблагоприятных производственных факторов. Из-за шума у работающих возникает более быстрое утомление, которое приводит к снижению производительности на 10...15%, увеличению числа ошибок при выполнении операций трудового процесса и, следовательно, к повышенной опасности возникновения травм. При длительном воздействии шума снижается чувствительность слухового аппарата, возникают патологические изменения в нервной и сердечно-сосудистой системах.

Шум — это совокупность звуков различной силы и частоты (высоты), беспорядочно изменяющихся во времени. По своей природе звуки являются механическими колебаниями твердых тел, газов и жидкостей в слышимом диапазоне частот (16...20 000 Гц). В воздухе звуковая волна распространяется от источника механических колебаний в виде зон сгущения и разрежения. Механические колебания характеризуются амплитудой и частотой.

Амплитуда колебаний определяет давление и силу звучания: чем она больше, тем больше звуковое давление и громче звук. Сущность слухового восприятия состоит в улавливании ухом отклонения давления воздуха, создаваемого звуковой волной, от атмосферного. Значение нижнего абсолютного порога чувствительности слухового анализатора составляет 2-10~5Па при частоте 1000 Гц, а верхнего порога — 200 Па при той же частоте звука.

Частота колебаний влияет на слуховое восприятие и определяв! высоту звучания. Колебания с частотой ниже 16 Гц составляют область инфразвуков, а выше 20 000 Гц — ультразвуков. С возрастом (примерно с 20 лет) верхняя граница воспринимаемых человеком частот снижается: у людей среднего возраста до 13... 15 кГц, пожилого — до 10 кГц и менее. Чувствительность слухового аппарата с увеличением частоты от 16 до 1000 Гц повышается, на частотах 1000...4000 Гц она максимальна, а при частоте более 4000 Гц падает.

При гигиенической оценке шума измеряют его интенсивность (силу) и определяют спектральный состав по частоте входящих в него звуков. Интенсивность звука — это количество звуковой энергии, переносимое звуковой волной за единицу времени и отнесенное к единице площади поверхности, перпендикулярной направлению распространения волны. Значения интенсивности звука изменяются в очень широких пределах — от 10-12 до 10 Вт/м2. В связи с сильной растянутостью диапазона изменения интенсивности и особенностями восприятия звуков (см. закон Вебера — Фехнера) введены логарифмические величины — уровень интенсивности и уровень звукового давления, выражаемые в децибелах (дБ). При использовании логарифмической шкалы уровень интенсивности звука:

Li = 101g(I/I0),

уровень звукового давления:

L = 20lg(p/p0)

где I и I0 — соответственно фактическое и пороговое значения интенсивности звука, Вт/м2: I0= 10-12 Вт/м2 при эталонной частоте fэ= 1000Гц; р и P 0 - соответственно фактическое и пороговое звуковое давление, Па: р0 = 2*10-5 Па при fэ= 1000 Гц.

В связи с этим введено понятие громкость звука, единицами измерения которой служат фоны и соны. Громкость звуков определяют, сравнивая их с эталонным звуком частотой 1000 Гц. Для эталонного звука единицы его интенсивности в децибелах приравнены к фонам (рис. 19.1). Так, громкость звука частотой 1000 Гц и интенсивностью 30 дБ равна 30 фонам, такой же величине равна громкость звука в 50 дБ частотой 100 Гц.

Измерение громкости в сонах нагляднее показывает, во сколько раз один звук громче другого. Уровень громкости в 40 фон

255

принят за 1 сон, в 50 фон — за 2 сона, в 60 фон — за 4 сона и т. д. Следовательно, с увеличением громкости на 10 фонов ее величина в сонах увеличивается вдвое.

Для обеспечения безопасности производственной деятельности необходимо учитывать способность звуковых волн отражаться от поверхностей или поглощаться ими. Степень отражения зависит от формы отражающей поверхности и свойств материала, из которого она изготовлена. При большом внутреннем сопротивление материалов (таких, как войлок, резина и т. п.) основная часть падающей на них звуковой волны (энергии) не отражается, а поглощается.

Особенности конструкции и формы помещений могут приводить к многократному отражению звука от поверхностей пола, стен и потолка, удлиняя тем самым время звучания. Такое явление называют реверберацией. Возможность возникновения реверберации учитывают на стадии проектирования зданий и помещений, в которых предполагается установить шумные машины и оборудование.