Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
прога.docx
Скачиваний:
14
Добавлен:
06.08.2019
Размер:
93.3 Mб
Скачать

6. Форматы представления вещественных чисел. Структура представления числа: мантисса, порядок. Диапазон вещественного числа и количество значащих цифр.

Представление чисел в формате с плавающей запятой. Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой. В этом случае положение запятой в записи числа может изменяться.

Формат чисел с плавающей запятой базируется на экспоненциальной форме записи, в которой может быть представлено любое число. Так число А может быть представлено в виде:

A = m  qn

2.3

где m - мантисса числа; q - основание системы счисления; n - порядок числа.

Для единообразия представления чисел с плавающей запятой используется нормализованная форма, при которой мантисса отвечает условию:

1/n  |m| < 1.

Это означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля.

Преобразуем десятичное число 555,55, записанное в естественной форме, в экспоненциальную форму с нормализованной мантиссой:

555,55 = 0,55555  103 .

Здесь нормализованная мантисса: m = 0,55555, порядок: n = 3.

Число в формате с плавающей запятой занимает в памяти компьютера 4 (число обычной точности) или 8 байтов (число двойной точности). При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Диапазон изменения чисел определяется количеством разрядов, отведенных для хранения порядка числа, а точность (количество значащих цифр) определяется количеством разрядов, отведенных для хранения мантиссы.

Определим максимальное число и его точность для формата чисел обычной точности, если для хранения порядка и его знака отводится 8 разрядов, а для хранения мантиссы и ее знака - 24 разряда:

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Знак и порядок

знак и мантисса

Максимальное значение порядка числа составит 11111112 = 12710, и, следовательно, максимальное значение числа составит:

2127 = 1,7014118346046923173168730371588  1038 .

Максимальное значение положительной мантиссы равно:

223 - 1  223 = 2(10  2,3)  10002,3 = 10(3  2,3)  107.

Таким образом максимальное значение чисел обычной точности с учетом возможной точности вычислений составит 1,701411  1038 (количество значащих цифр десятичного числа в данном случае ограничено 7 разрядами).

7. Понятие алгоритма. Исполнитель. Система команд исполнителя. Свойства алгоритмов. Компьютер как универсальный исполнитель.

В сегодняшнем социуме слово «алгоритм» настолько широко распространено, что большинству интуитивно понятно. Под ним мы понимаем какую-либо последовательность шагов для достижения той или иной цели. Однако для теоретической науки понятие «алгоритма» достаточно сложное.

Считается, что однозначного определения алгоритма нет, хотя в основном различные источники дают очень близкие определения. Итак, в широко распространенных определениях алгоритма (в рамках школьного курса информатики) можно выделить следующие составляющие:

Алгоритм – это конечная последовательность указаний на языке понятном исполнителю, задающая процесс решения задач определенного типа и ведущая к получению результата, однозначно определяемого допустимыми исходными данными.

В последнем пункте определения говорится о том, что результат выполнения алгоритма напрямую зависит от исходных данных. Т.е. один и тот же алгоритм при разных исходных данных даст разные результаты. С другой стороны, если одному и тому же алгоритму передать несколько раз одни и те же данные, он должен столько же раз выдать один и тот же результат.

Слово «алгоритм» происходит от имени ученого IX века Муххамеда бен Аль-Хорезми («аль-хорезми» -> «алгоритм»), который описал правила выполнения арифметических действий в десятичной системе счисления. Словом «алгоритм» потом и стали обозначать эти правила вычислений. Однако с течением времени понятие алгоритма видоизменялось и в XX веке под ним стали понимать какую-либо последовательность действий, приводящую к решению поставленной задачи.

Разрабатывать, придумывать алгоритмы могут только разумные существа (например, человек). А вот формально (не думая и не оценивая) исполнять, могут какие-либо машины (например, компьютеры, бытовые приборы). В чем польза такого разделения труда? Дело в том, что человек освобождается от рутинной деятельности, которая часто может занимать много времени, и поручает ее машинам.

Однако машины не люди: приборы понимают лишь ограниченное число команд и могут обрабатывать данные (объекты) далеко не всех типов. Отсюда следует, что разработчик алгоритма в конечном итоге должен описать алгоритм в допустимых командах определенного исполнителя (той машины, которой будет поручено выполнение алгоритма). Совокупность команд, которые данный исполнитель может выполнять, называется системой команд исполнителя. Объекты (данные), над которыми исполнитель может выполнять действия, формируют среду исполнителя.

Свойства алгоритма

Дискретность (в данном случае, разделенность на части) и упорядоченность. Алгоритм должен состоять из отдельных действий, которые выполняются последовательно друг за другом.

Детерминированность (однозначная определенность). Многократное применение одного алгоритма к одному и тому же набору исходных данных всегда дает один и тот же результат.

Формальность. Алгоритм не должен допускать неоднозначности толкования действий для исполнителя.

Результативность и конечность. Работа алгоритма должна завершаться за определенное число шагов, при этом задача должна быть решена.

Массовость. Определенный алгоритм должен быть применим ко всем однотипным задачам.

Под алгоритмом понимают постоянное и точное предписание (указание) исполнителю совершить определенную последовательность действий, направленных на достижение указанной цели или решение поставленной задачи.

Для программиста, составляющего программы на универсальных языках программирования, в том числе перечисленных выше, компьютер является универсальным исполнителем. Иначе говоря, на таких языках можно составить программу решения любой задачи по обработке информации.

Программы составляются программистами по алгоритмам для решения определенных задач. Человек не должен объяснять исполнителю свои цели и смысл команд программы. Очевидно, что компьютер и не сможет понять смысла совершаемых им действий. Кроме того, компьютер не обладает способностью к анализу результатов, например, с точки зрения их соответствия постановке задачи. Компьютер не может обойтись без программы и исходных данных, подготовить которые под силу только человеку. С этой точки зрения решение задачи компьютером — это формальное исполнение алгоритма ее решения, закодированного и хранимого вместе с данными в оперативной памяти.

Для человека этот факт важен потому, что он должен понимать ограниченность возможностей компьютера как исполнителя, необходимость самому предусмотреть все тонкости команд, поручаемых компьютеру для исполнения, и что вся ответственность за использование компьютеров обществом лежит только на людях.

Пользователь (не программист) работает с каким-либо средством прикладного программного обеспечения (текстовым редактором, табличным процессором, бухгалтерским пакетом программ и т. п.). В этом случае компьютер для него является специализированным исполнителем, ориентированным на определенный тип работы (редактирование текста, табличные расчеты, вычисление заработной платы и пр.). Такой пользователь может и не знать, какие услуги компьютера реализуются аппаратными, а какие — программными средствами. Для него компьютер является «виртуальной маши- ной», обслуживающей его информационные потребности. Аппаратное обеспечение (hardware) и программное обеспечение (software) компьютера для пользователя представляются единым целым.

8. Программирование как раздел информатики. Языки программирования. Обзор. Классификация.

9. Язык программирования СИ. Общая характеристика языка.

10. Понятие среды программирования. Компоненты среды. Компиляция и компановка программы.

КОМПИЛЯЦИЯ (compilation) - трансляция программы (кода) или отдельного программного модуля, составленных на языке программирования высокого уровня (исходная программа, исходный модуль) в программу или модуль на машинном языке или языке, близком к машинному (объектная программа, объектный модуль). В процессе К. программа преобразуется в промежуточную форму, к которой впоследствии необходимо присоединить библиотечные средства, содержащие стандартные подпрограммы и процедуры, а если нужно, то можно добавить любые другие модули, написанные самим пользователем, и скомпилированные в объектные модули, возможно, с иных языков высокого уровня.

Компоновка программы

После устранения ошибок и получения объектного модуля можно приступать к следующему этапу — созданию исполняемого (загрузочного) модуля, или, как еще называют этот процесс, к компоновке программы. Главная цель этого этапа — преобразовать код и данные в объектных файлах в их перемещаемое выполняемое отображение.

Результатом работы компоновщика является создание загрузочного файла с расширением .ехе. После этого операционная система может загрузить такой файл в память и выполнить его.