Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора по матведу.rtf
Скачиваний:
1
Добавлен:
04.08.2019
Размер:
1.44 Mб
Скачать

7Вопрос

1. МеталлыВсе элементы, расположенные левее галлииндия и таллия - металлы, а правее мышьяка, сурьмы и висмута - неметаллы.В технике под неметаллом понимают вещества, обладающие «металлическим блеском» и пластичностью - характерные свойства.Кроме этого все металлы обладают высокой электропроводностью и теплопроводностью.Особенность строения металлических веществ заключается в том, что все они построены в основном из легких атомов, у которых внешние электроны слабо связаны с ядром. Это обуславливает особый характер взаимодействия атомов металла и металлические свойства. Металлы являются хорошими проводниками электрического тока.2. Классификация металловВсе металлы можно разделить на две большие группы - черные и цветные металлы.Черные металлы чаще всего имеют темно-серый цвет, большую плотность (кроме щелочно-земельных), высокую температуру плавления, относительно высокую твердость. Наиболее типичным металлом этой группы является железо.Цветные металлы чаще всего имеют характерную окраску: красную, желтую и белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления. Наиболее типичным элементом этой группы является медь.Черные металлы в свою очередь можно подразделить следующим образом:1. Железные металлы - железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Co, Ni, Mu часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.2. Тугоплавкие металлы, температура плавления которых выше, чем железа (т.е. выше 1539С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов. К ним относят: Ti, V, Cr, Zr, Nb, Mo, Tc (технеций), Hf (гафий), Ta(тантал), W, Re (рений).3. Урановые металлы - актиниды, имеющие преимущественное применение в сплавах для атомной энергетики. К ним относят: Ас(актиний), Th(торий), U(уран), Np(нептуний), Pu(плутоний), Bk(берклий), Cf (калифорний), Md(менделевий), No(нобелий) и др.4. Редкоземельные металлы (РЗМ) - La(лантан), Ce(церий), Nd(неодим), Sm(санарий), Eu(европий), Dy(диспрозий), Lu(лютеций), Y(иттрий), Sc(сландий) и др., объединяемые под названием лантаноидов. Эти металлы обладают весьма близкими химическими свойствами, но довольно различными физическими (Тип.и др.). Их применяют как присадки к сплавам других элементов. В природных условиях они встречаются вместе и трудно разделимы на отдельные элементы. Обычно используется смешанный сплав - 40-45% Се (церий) и 40-45% всех других РЗМ.5. Щелочноземельные металлы - в свободном металлическом состоянии не применяются, за исключением особых случаев, например, теплоносители в атомных реакторах. Li(литий), Na, K(калий), Rb(рубидий), Cs(цезий), Fr(франций), Ca(кальций), Sr(стронций), Ba(барий), Ra(радий).Цветные металлы подразделяются на:1. Легкие металлы - Ве(берилий), Mg(магний), Al(аллюминий), обладающие малой плотностью.2. Благородные металлы - Ag(серебро), Pt(платина), Au(золото), Pd(палладий), Os(осмий), Ir(иридий), и др. Сu - полублагородный металл. Обладают высокой устойчивостью против коррозии.3. Легкоплавкие металлы - Zn(цинк), Cd(кадмий), Hg(ртуть), Sn(олово), Bi(висмут), Sb(сурьма), Pb(свинец), As(мышьяк), In(индий) и т.д., и элементы с ослабленными металлическими свойствами - Ga(галий), Ge(германий).Наибольшее распространение в технике получили сплавы железа с углеродом: сталь (0,025-2,14% С) чугун (2,14-6,76% С); причина широкого использования Fe-C сплавов связано с рядом причин: малой стоимостью, наилучшими механическими свойствами, возможностью массового изготовления и большой распространенностью руд Fe в природе.

Более 90% изготовленных металлов составляет сталь.

опрос механические свойства: Временного сопротивления; Предела упругости; Модуля упругости; Условного предела текучести; Относительного сужения; Относительного удлинения после разрыва; Равномерного относительного удлинения;Статические испытания на изгиб с определением угла загиба; Испытания на ударный изгиб с определением величины ударной вязкости;Испытание на ударный изгиб с определением склонности к механическому старению;Испытания труб на раздачу;Испытание труб на сплющивание;Определение твердости по Роквеллу;Определение твердости по Бринеллю;Металлографические исследования:Исследование макроструктуры с целью определения: - Наличия и величины неоднородности структуры и дефектов в основном металле;- Направления прокатки; - Наличия и величины неоднородности структуры и дефектов в сварном шве; - Количества проходов и размеры валиков в сварном шве;- Геометрии и размеров зон термического влияния сварного шва. Исследование микроструктуры с целью определения:- Наличия и величины неметаллических включений; - Величины зерна;- Структуры материала;- Величины и геометрии структурных составляющих;      Фиксирование результатов на цифровые носители;      Определение содержания сульфидов железа на поверхности методом серных отпечатков

9вопрос Про́чность— свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих под воздействием внешних сил.Прочность подразделяют на статическую, под действием постоянных нагрузок, динамическую и усталостную (выносливость), имеющую место при действии циклических переменных нагрузок.Для конструкций различают общую прочность — способность всей конструкции выдерживать нагрузки без разрушения, и местную — та же способность отдельных узлов, деталей, соединений. Количественное рассмотрение В настоящее время при расчёте на прочность используют как расчёт по допускаемым напряжениям, так и расчёт по допускаемому числу циклов нагружения. Основные уравнения расчёта по допускаемым напряжениям: где и  — наибольшие расчётные нормальное и касательное напряжения, соответственно; и  — допускаемые нормальное и касательное напряжения, безопасные для прочности детали. Характеристики прочности: предел пропорциональности,предел текучести, предел прочности (временное сопротивление разрушению),истинное сопротивление разрыву.

10вопрос пласти́чность способность материала получать остаточные деформации без разрушения и сохранять их после снятия нагрузки;

Характеристики пластичности: относительное остаточное удлинение,относительное остаточное сужение.

12вопрос Ударная вязкость — способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки.ударная вязкость характеризует способность материала к быстрому поглощению энергии. Методы испытаний Существующие лабораторные методы отличаются по:способу закрепления образца на испытательном стенде;способу приложения нагрузки - падающая гиря, маятник, молот...;наличию или отсутствию надреза в месте приложения удара Для испытания "без надреза" выбирается лист материала с равной толщиной по всей площади. При проведении испытания "с надрезом" на поверхности листа проделывается канавка, как правило, на стороне обратной по отшению к месту удара, на всю ширину (длину) образца, глубиной на 1/2 толщины.Ударная вязкость при испытании "без надреза" может превышать результат испытаний "с надрезом" более чем на порядок.Для испытания на ударную вязкость изготовляют особые образцы, имеющие форму брусочков с квадратным поперечным сечением. Испытание образцов должно производиться в одинаковых условиях, чтобы полученные результаты можно было сравнить. Поэтому соответствующими стандартами установлены определенные размеры образцов.Маятниковый копер с грузом в 10, 15 или 30 кг, укрепленный на станине, поднимают на определенную высоту и закрепляют защелкой. После освобождения защелки маятник свободно падает и ударяет по образцу со стороны, противоположной надрезу. Величина ударной вязкости различных металлов и сплавов составляет: у чугуна 0,5, стали 2,7, меди 5,5, никеля 18-18,5, цинка 0,6-0,7 кгмс/см2.Разрушение образцов имеет различный характер. У хрупких металлов образцы разламываются без изменения формы, у металлов пластичных образцы подвергаются значительному изгибу в месте излома.

13вопрос Т способность твёрдых тел воспринимать действующие на них нагрузки без образования трещин.Параметр трещиностойкости характеризует чувствительность металла к трещинам в условиях статического растяжения.Коэффициент интенсивности напряжений, КИН, используется в линейной механике разрушения для описания полей напряжений у вершины трещины. Поле напряжений у вершин трещины имеет сингулярность вида , где r — расстояние от вершины трещины до точки, напряжение в которой рассматривается.Размерность К в системе СИ — Па√м.Если у двух тел с трещинами одинаковые значения К, то поля напряжений в окрестности трещины будут одинаковыми.

14вопрос Усталость материала— процесс постепенного накопления повреждений под действием переменных (часто циклических) напряжений, приводящий к изменению его свойств, образованию трещин, их развитию и разрушению материала за указанное время. Обратное свойство материала называется выносливостью - свойство материала воспринимать переменные (циклические) нагрузки без разрушения указанное время. Выносливость, так же как и прочность, для многих материалов сильно зависит от температуры, это явление получило название хладноломкость. Основным методом предотвращения усталостного разрушения является модификация конструкции механизма с целью исключения циклических нагрузок, либо замена материалов на менее склонные к усталости. Значительное увеличение выносливости даёт химико-термическая обработка металлов, например азотирование. Преде́л выно́сливости (также преде́л уста́лости) — в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, т.е. способность воспринимать нагрузки, вызывающие циклические напряжения в материале.Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклическихнагружений.Предел выносливости обозначают как σR, где коэффициент R принимается равным коэффициенту асимметрии цикла. Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных как σ0.Предел выносливости материала материала определяют с помощью испытаний серий одинаковых образцов (не менее 10 шт.): на изгиб, кручение, растяжение-сжатие или в условиях комбинированного нагружения (последние два режима для имитации работы материала при асимметричных циклах нагружения или в условиях сложного нагружения). Испытание начинают проводить при высоких напряжениях (0,7 — 0,5 от предела прочности), при которых образец выдерживает наименьшее число циклов. Постепенно уменьшая напряжения можно обнаружить, что стальные образцы не проявляют склонности к разрушению независимо от длительности испытания. Опыт их испытания показывает, что если образец не разрушился до 107 циклов, то и при более длительном испытании он не разрушится. Поэтому это число циклов обычно принимают за базу испытаний и устанавливают то наибольшее значение максимального напряжения цикла, при котором образец не разрушается до базы испытаний. Это значение и принимают за предел выносливости.

15вопрос Сплав — макроскопически однородная смесь двух или большего числа химических элементов с преобладанием металлических компонентов. Основной или единственной фазой сплава, как правило, является твёрдый растворлегирующих элементов в металле, являющемся основой сплава.Сплавы имеют металлические свойства, например: металлический блеск, высокие электропроводность и теплопроводность. Иногда компонентами сплава могут быть не только химические элементы, но и химические соединения, обладающие металлическими свойствами. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. Макроскопические свойства сплавов всегда отличаются от свойств их компонентов, а макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения примесных фаз в металлической матрице.Сплавы обычно получают с помощью смешивания компонентов в расплавленном состоянии с последующим охлаждением. При высоких температурах плавления компонентов, сплавы производятся смешиванием порошков металлов с последующим спеканием (так получаются, например, многие вольфрамовые сплавы).Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В состав многих сплавов могут вводиться и неметаллы, такие как углерод, кремний, бор и др. В технике применяется более 5 тыс. сплавов. Литейные свойства сплавов Важнейшие свойства сплавов: высокая жидкотекучесть, малая усадка, небольшая склонность к образованию литейных напряжений, незначительная ликвация примесей, мелкокристаллическое строение. Жидкотекучесть. Способность сплава в жидком состоянии заполнять литейную форму и воспроизводить контуры полостей формы и стержней. О жидкотекучести сплавов судят по длине (в см) заполненной части формы. Жидкотекучесть сплавов увеличивается с повышением температуры перегрева сплава. Однако во избежание появления брака по усадке, пригару формовочной смеси и трещинам температура сплава при заливке форм должна быть умеренно высокой. Усадка. Процесс уменьшения линейных размеров и объема жидкого сплава в форме при охлаждении называют усадкой. В литейном производстве различают объемную и линейную усадку сплавов.Объемной усадкой называют разность между объемом полости формы и объемом отливки после ее охлаждения. Линейной усадкой называют разность между линейными размерами формы и остывшей отливки.В практике литейного производства усадку обычно выражают в процентах по отношению к первоначальному объему жидкого сплава (объемная усадка) или к первоначальным линейным размерам в полости формы (линейная усадка). Величина усадки зависит от химического состава сплава. Так, повышение содержания углерода и кремния и уменьшение содержания марганца и серы в чугуне приводят к уменьшению усадки.Для борьбы с линейной усадкой следует размеры модели делать больше размеров отливки на величину литейной усадки. Борьба же с усадочными раковинами и пористостью более трудна. К основным мерам предупреждения усадочных раковин и пористости относятся: достаточное питание отливки путем увеличения сечения литниковой системы, установка прибылей, применение холодильников, улучшение конструкции отливки. Литейные напряжения. В отливке в процессе ее остывания в форме возникают литейные напряжения: вследствие неравномерной усадки - усадочные напряжения; ввиду неодинаковой скорости остывания отдельных частей отливки - термические напряжения; в связи с изменением кристаллического строения отливки - фазовые напряжения.Усадке практически всегда в той или иной степени препятствуют болваны, стержни и т. п., и поэтому в разных частях отливки получается неравномерная усадка.В некоторых сплавах в процессе охлаждения изменяются структура и размеры отдельных зерен, вследствие чего увеличивается или уменьшается объем отливок. Эти изменения в тонких и толстых частях отливки совершаются в разное время. Ликвация. При затвердевании сплава, залитого в форму, на протяжении всего времени его остывания происходит процесс выравнивания химического состава по всему сечению отливки. Однако этот процесс протекает медленно, вследствие чего в отдельных частях отливки, а также в отдельных зернах сплава, наблюдается химическая неоднородность, называемая ликвацией. Обычно ликвация обусловливается тем', что отдельные составляющие сплава, имеющие неодинаковую плотность и различные температуры затвердевания, отделяются от основной массы сплава как в жидком состоянии, так и при его затвердевании. Ликвация уменьшается при понижении температуры и скорости заливки, а также при ускорении затвердевания отливки. Наибольшей склонностью к ликвации отличаются сплавы с большим содержанием свинца. Строение (структура) сплавов. Наилучшие свойства имеют сплавы в том случае, когда их структура получается мелкокристаллической и без промежуточных пленок, ослабляющих связь между отдельными кристаллами (или группами кристаллов). Обычно в литейных сплавах рассматриваются не отдельные кристаллы, которые очень малы, а группы кристаллов, образующие кристаллиты или зерна.Уменьшение размеров зерен сплава достигается понижением температуры и скорости заливки и в особенности увеличением скорости охлаждения при затвердевании отливки. Для того чтобы придать сплаву мелкозернистую структуру, в него вводят особые добавки - модификаторы. Механические свойства стали:Прочность на растяжение, Предел текучести, Относительное удлинение, НВ. Влияние примесей на свойства стали: Марганец вводится в сталь для раскисления и остаётся в ней в количестве 0,3...0,8%. Мn уменьшает вредное влияние кислорода и серы.Кремний - полезная примесь, вводится в сталь в качестве активногораскислителя в количестве до 0,4%.Сера - вредная примесь, вызывает красноломкость стали, в стали она находится в виде сульфидов FeS, которые образуют с железом эвтектику, отличающуюся низкой температурой плавления и располагающуюся по границам зёрен, при горячей деформации границы зерен оплавляются и сталь хрупко разрушается. От красноломкости предохраняет марганец, который связывает серу в сульфиды MnS исключающие образование легкоплавкой эвтектики. Положительное влияние серы проявляется лишь в улучшении обрабатываемости резанием.Фосфор - вредная примесь. Он растворяется в феррите, упрочняет его, но снижает вязкость при пониженных температурах, т.е. вызывает хладноломкость. Фаза - термодинамически равновесное состояние вещества, качественно отличающееся по своим физическим свойствам от других равновесных состояний того же вещества.

25 вопрос Влияние углерода на свойства стали С изменением содержания углерода изменяется структура стали. В зависимости от содержания углерода она может иметь следующий вид:< 0,8% C – Ф+П;0,81% C – П (100%);> 0,81% C – П + ЦII.Имея различную структуру, все стали состоят только из двух фаз: Ф и Ц.Количество цементита возрастает в стали прямо пропорционально содержанию углерода. Феррит (Ф) – мягкая, пластичная фаза, твёрдость по Бринеллю – 80–90 НВ. Цементит (Ц) – твёрдая и хрупкая фаза >800 НВ. Технически чистое железо – мягкое, не содержит Ц или имеет ЦIII (его максимальное содержание в технически чистом железе может достигать – 0,29%).В доэвтектоидных сталях появляется цементит входящий в перлит (Ф+Ц), следовательно твёрдость будет возрастать.В эвтектоидной стили – цементита в перлите содержится 12%, остальное феррит.В заэвтектоидной стали появляется ЦII – 20,4%, а также цементит входящий в перлит ~ 10%, т.о.всего его около 30%.Следовательно, чем больше % С в стали, тем количество феррита уменьшается, а количество цементита увеличивается.С увеличением в стали углерода возрастает твёрдость, пределы прочности и текучести и уменьшаются относительное удлинение, относительное сужение и ударная вязкость.

26 вопрос. Влияние кремния и марганца Кремний (Si) и марганец (Мn) переходят в сталь в процессе её раскисления при выплавке. Они раскисляют сталь, т.е. соединяясь с кислородом закиси железа FeO, в виде окислов переходят в шлак: 2FeO + Si = 2Fe + SiO, FeO + Mn = Fe + MnO. Частично Si u Mn остаются в стали: Si – 0,35 – 0,4%,Mn – 0,5 – 0,8%. Удаляя О2– Si и Mn – повышают плотность металла (слитка).Si – сильно повышает предел текучести, снижает пластичность (стали с высоким содержанием Si не годятся к глубокой, холодной вытяжке). Поэтому стали предназначенные для холодной штамповки и холодной высадки должны содержать минимальное количество Si.Mn – заметно повышает прочность σв, σт, практически не снижая пластичности. Резко уменьшает красноломкость стали. Сера (S) является вредной примесью. Попадает в сталь из чугуна (из золы и руды).Содержание серы:S – 0,035 – 0,06% (0,018% S – качественная сталь). Сера образует с железом соединение FeS. Это соединение образуют с железом легкоплавкую эвтектику с температурой плавления – Тпл = 988˚С. Наличие эвтектики вызывает красноломкость, т.е. хрупкость при высоких температурах. При нагреве до 1000–1200˚С эвтектика, располагающая по границам зёрен, расплавляется и при деформации (ОМД) в стали возникают надрывы и трещины.Вывозят серу из стали с помощью марганца. Марганец обладает большим сродством к сере, чем железо, и образует соединение MnS с высокой температурой плавления Тпл = 1620˚С: FeS + Mn → MnS + Fe. Сера и её соединения при комнатных и пониженных температурах способствует снижению ударной вязкости стали, т. к. разрушение металла идёт по сульфидным включениям (поэтому ударная вязкость металла (KCU) снижается).Также сера снижает пластичность – δ,ψ%. Сернистые включения ухудшают свариваемость и коррозионную стойкость. Сера облегчает обрабатываемость резанием. Влияние фосфораФосфор (Р) является вредной примесью. Содержится в пределах 0,025–0,045% . Попадает в сталь в процессе производства из руды, топлива, флюсов.Растворяясь в феррите, фосфор сильно искажает решетку и увеличивает пределы прочности и текучести, но уменьшает пластичность и вязкость.Снижение вязкости тем значительнее, чем больше в стали фосфора.Фосфор значительно повышает порог хладноломкости. Каждая 0,01% Р повышает порог хладноломкости стали на 20 – 25˚С (для углерода такое же влияние оказывает каждая 0,1%).Фосфор обладает большой склонностью к ликвации (неоднородность распределения). Фосфор скапливается в серединных слоях слитка, по границам зёрен, сильно снижая ударную вязкость.Фосфор (Р) – усиливает ковалентную (хрупкую) связь и ослабляет металлическую. С понижением температуры хрупкость металла увеличивается (хладноломкость). Фосфор облегчает обрабатываемость стали режущим инструментом (создавая хрупкость). Совместное присутствие в стали фосфора и меди (Р + Сu) – повышает сопротивление коррозии. Влияние азота, кислорода и водородаКислород (О2): образует неметаллические включения оксиды – FeO, MnO, Al2O3, SiO2.Азот (N2): образует нитриды – Fe4N, Fe2N, AlN. Кислород и азот в свободном виде располагаются в раковинах, трещинах и др. Эти включения значительно уменьшают ударную вязкость, повышают порог хладноломкости и уменьшают пластичность, при этом повышается прочность стали.Водород (Н2):при затвердевании часть водорода в атомарном состоянии остаётся в стали. При переходе атомарного водорода в молекулярный повышается давление до 150 МПа, образуя эллипсовидные впадины – флокены, которые являются неисправимым браком. Флокены способствуют сильномуохрупчиванию стали.Частично удалить водород с поверхностного слоя можно путём нагрева до 150–180˚С, лучше всего в вакууме ~ 10-2 – 10-3 мм. рт. ст. или нагрев до 800˚С и выдержке, водород уходит и остаётся чистый металл.

27, 28 вопросы Классификация углеродистых сталей.В зависимости от назначения стали делят на:конструкционные (детали машин, механизмов и различных конструкций, болты, гайки, мосты,краны); инструментальные стали (режущий инструмент, мерительный инструмент, штампы). По структуре: доэвтектоидные; эвтектоидные; заэвтектоидные. По содержанию углерода: малоуглеродистые (0,25%С);среднеуглеродистые (0,6%С);высокоуглеродистые (> 0,6%С). По качеству:обыкновенного качества ( <0,05%S; <0,04%Р); качественные ( <0,04%S; <0,035%Р); высококачественные( <0,03%S; <0,03%Р). Качество сталей определяется содержанием в них вредных примесей: серы и фосфора. Конструкционные стали изготавливают обыкновенного качества и качественными; инструментальные стали - качественными и высококачественными. 1.Стали обыкновенного качества Данные стали в процессе выплавки меньше очищаются от вредных примесей и содержат больше S и Р, большое количество неметаллических включений, значительно развита ликвация. Содержание S до 0,05%; Р до 0,04%.Маркируются: Cт0, Cт 1, Cт2, Cт3, Cт4, Cт5, Cт6.Все эти стали по структуре доэвтектоидные - 0,06-0,49%С. Указание способа раскисления: Первая цифра - указывает только порядковый номер марки стали, а не содержание углерода. Но с увеличением номера содержание углерода увеличивается. Чем больше содержится в стали углерода, тем выше прочность и ниже пластичность.Вторая цифра (может изменяться от 1 до 5) - гарантирует определенные механические свойства и химический состав стали (категория поставки). Стали 1-ой категории имеют гарантию по механическим свойствам (предел текучести, временное сопротивление, относительное удлинение). Стали 2-ой категории имеют гарантию по механическим свойствам и химическому составу.

Стали 3-й категории - по механическим свойствам, химическому составу и ударной вязкости при +200С. Стали 4-ой категории - по механическим свойствам, химическому составу и ударной вязкости при -200С. Стали 5-ой категории - по механическим свойствам, химическому составу, ударной вязкости при -200С и после старения. Области применения сталей обыкновенного качества: Ст0 - ограждения, перила, кожухи, обшивка (т.е. детали неответственные). Ст1 - детали с высокой вязкостью и низкой твердостью (болты, связывающие обшивки). Ст2 - неответственные детали требующие высокой пластичности или глубокой вытяжки. Ст3 - несущие элементы сварных и не сварных конструкций или деталей; обода колес автомобилей. Ст5 - болты, гайки, тяги, трубные решетки, клинья, рычаги, упоры, штыри, стержни, пальцы. Ст6 - бабы молотов (ударная часть), шпиндели (вращающая часть на станке), ломы строительные. От Ст0 до Ст6 - балки двутавровые, швеллеры, угловая сталь. Стали обыкновенного качества поставляются по гарантированному химическому составу и механическим свойствам. Спокойная сталь по температуре перехода в хрупкое состояние значительно лучше, чем кипящая. Качественные конструкционные углеродистые сталиЭти стали выплавляют кислородно-конверторным способом, в мартеновских печах или электропечах. В зависимости от раскисления они могут быть спокойными или кипящими.К стали этой группы предъявляются более высокие требования относительно химического состава:меньше содержание серы - 0,04%,фосфора - 0,035%;меньше количество неметаллических включений;повышенные требования к макро- и микроструктуре сплава.Поставляются стали по гарантированному химическому составу и механическим свойствам. Маркировка производится цифрами: 05, 08, 10, 15, 20, …70, 75, 85, 10кп. Цифры указывают среднее содержание углерода в сотых долях процента. Стали 65, 70, 75, 80 можно отнести к группе рессорно-пружинных сталей (характеризуются высоким пределом упругости) Изготавливают горячекатаную и кованую сталь с термической обработкой (отжиг, нормализация, высокий отпуск), так и без нее.Сталь предназначается для горячей обработки давлением, механической обработки и для холодного волочения (подкат). Области применения углеродистых качественных конструкционных сталей:05кп, 08, 08кп, 08ю - детали изготавливаемые холодной штамповкой и глубокой вытяжкой (кузова, крылья автомобилей, топливные баки, змеевики, элементы сварных конструкций); 10, 15 - используют для деталей не испытывающих высоких нагрузок: кулачковые валики, рычаги, оси, втулки, болты, гайки, заклепки, муфты. 20, 25 - крепежный материал, соединительные муфты, шпиндели, толкатели клапанов, пальцы рессор, рамы и другие детали автотракторного с/х машиностроения. 30, 35 - слабонагруженные оси, валы различных машин и механизмов, шпиндели, шестерни ,рычаги, звездочки, кольца, шатуны. 40, 45, 50 - средненагруженные оси, валы, шестерни, втулки, коленчатые валы, плунжеры, фрикционные диски. 60, 65, 70, 75, 80, 85 - пружины, рессоры, шпиндели, замковые шайбы, прокатные валки, ж/д рельсы, крановые колеса. Автоматные стали (конструкционные) Хорошо обрабатываются при больших скоростях резания, при этом получается высокое качество поверхности. Это достигается повышенным содержанием серы и фосфора. (S = 0,3%; Р = 0,15%). Сульфиды марганца MnS способствуют образованию короткой и ломкой стружки. Фосфор, повышая прочность, твердость и порог хладноломкости, способствует образованию ломкой стружки и получению гладкой и блестящей поверхности. Маркировка: А12, где А - автоматная, «12» - среднее содержание углерода в сотых долях процента.А4ОГ - повышенное содержание Mn (1,2-1,55%).Содержание: S =0,08 - 0,3%; Р = 0,08 - 0,15%.А12 - 0,12%С, А30 - 0,3%С, А20 - 0,2%С, А40Г - 0,4%С.Для улучшения обрабатываемости можно добавлять свинец в количестве 0,15 - 0,3%.АС11, АС 14, АС40 - 0,4%С. Может быть проведено легирование селеном (Se): 0,1%.А35Е - 0,35%С. Обрабатываемость улучшается в 2 раза (по сравнению со сталями с повышенным содержанием S и P). Из автоматных сталей изготавливают болты, гайки, винты, детали сложной конфигурации на станках автоматах. Инструментальные качественные углеродыМаркируются углеродистые инструментальные стали: У7, У8, У10, У11, У12, У13, У14. Цифра показывает среднее содержание углерода в десятых долях процента: У7 - 0,7 % С; У11 - 1,1%С. Стали могут быть качественные и высококачественные. Содержание вредных примесей:Буква А в конце марки, указывает, что сталь высококачественная:Обозначение высококачественных углеродистых инструментальных сталей: У7А, У8А, …, У13А.Эти стали не обладают теплостойкостью, рабочая температура не более 190-2000С (при нагреве выше происходит резкое снижение твердости режущей кромки) с HRC62-63 до HRC15-18 (НВ 170-180). Области применения инструментальных сталей:У7, У7А - зубила, молотки, плоскогубцы, кусачки. У8, У8А - фрезы, ножи, зенковки, штампы, матрицы, пуансоны, ножницы, деревообрабатывающий инструмент. У9, У9А, У10, У10А - сверла, метчики, развертки, плашки, матрицы для холодной штамповки. У11, У11А, У12, У12А, У13, У13А - резцы, напильники, сверла, измерительный инструмент, ножовочные полотна (легированные ~ в 6-ть раз дороже углеродистых). Используют после термической обработки.

29-30вопросы Чугун- сплав железа с углеродом и другими элементами, содержащими более 2,14 % С. В металлургическом производстве чугуны выплавляют в доменных печах. Получаемые чугуны подразделяют на: предельные,специальные(ферросплавы) и литейные. Предельные и специальные чугуны используют для последующей переработки в сталь. Литейные чугуны (около 20 % всего выплавляемого чугуна) отправляют на машиностроительные заводы для использования при изготовлении литых заготовок деталей (литья). Нелегированный конструкционный чугун для производства отливок в машиностроении имеет следующий химический состав, %: 2,0 - 4,5 С; 1,0 - 3,5 Si;Широкое распространение чугуна в промышленности обусловлено оптимальным сочетанием различных свойств: технологических (литейных, обрабатываемости резанием), эксплуатационных (механических и специальных) и технико-экономических показателей. Классификация чугуновХарактерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения -- цементита Fe3C), но также в свободном состоянии - в виде графита. При этом форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугуна и их свойства. По специально разработанным шкалам оценивают форму включений графита, их размеры, характер распределения и количество, а также тип металлической основы.Классификация чугуна осуществляется по следующим признакам: по состоянию углерода - свободный или связанный;по форме включений графита - пластинчатый, вермикулярный, шаровидный, хлопьевидный;по типу структуры металлической основы (матрицы) - ферритный, перлитный; имеются также чугуны со смешанной структурой: например феррито-перлитные; по химическому составу - нелегированные чугуны (общего назначения) и легированные чугуны (специального назначения). В зависимости от формы выделения углерода в чугуне различают: белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита Fe3C; серый чугун, в котором весь углерод или его большая часть находится в свободном состоянии в виде пластинчатого графита; высокопрочный чугун, в котором графит имеет шаровидную форму; ковкий чугун, получающийся из белого путем отжига, при котором углерод переходит в свободное состояние в виде хлопьевидного графита. Структура и свойства чугуна Микроструктура чугуна состоит из металлической основы (матрицы) и графитных включений. Свойства чугуна определяются свойствами металлической основы и характера включений графита. Чугуны содержат следующие структурные составляющие:графит (Г);перлит (П);феррит (Ф);ледебурит (Л);фосфидную эвтектику.По микроструктуре различают: белый чугун (Ц+Г);серый перлитный чугун(П+Г);серый ферритный чугун (Ф+Г); высокопрочный чугун (П+шаровидный графит) Формирование микроструктуры чугуна зависит от его химического состава и скорости охлаждения (толщины) отливки. Структура металлической основы определяет твердость чугуна.Углерод в составе чугуна может присутствовать в виде химического соединения - цементит Fe3C, графита или их смеси. По сравнению с металлической основой графит имеет низкую прочность. Места его залегания можно считать нарушениями сплошности металла. Чугун как бы пронизан включениями графита, ослабляющими его металлическую основу. По мере округления графитных включений (за счет модифицирования чугуна присадками SiCa, FeSi, Al, Mg) их отрицательная роль как надрезов металлической основы снижается и механические свойства чугуна растут. Кремний способствует графитизации чугуна. Изменяя его содержание и скорость охлаждения отливки, можно получить чугун различной структуры.Марганец препятствует графитизации и нейтрализует вредное влияние серы, образуя с ней тугоплавкие соединения MnS.Фосфор не оказывает существенного влияния на процесс графитизации. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики, которая повышает его литейные свойства.Сера является вредной примесью. Она обусловливает ухудшение литейных свойств чугуна, увеличение усадки, повышение склонности к трещинообразованию, снижение температуры красноломкости чугуна.

31 вопросов. Серый чугун сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор, серу. Углерод в серых чугунах преимущественно находится в виде графита пластинчатой формы.Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размеров графитовых включений. Свойства металлической матрицы чугунов близки к свойствам стали. Графит, имеющий невысокую прочность, снижает прочность чугуна. Чем меньше графитовых включений, тем больше прочность чугуна. Графитовые включения вызывают уменьшение предела прочности чугуна при растяжении. На прочность при сжатии и твердость чугуна частицы графита практически не оказывают влияния. Свойство графита образовывать смазочные пленки обусловливает снижение коэффициента трения и увеличение износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость резанием. маркируют буквами «С» -серый и «Ч» - чугун. Число после буквенного обозначения показывает среднее значение предела прочности чугуна при растяжении. Например, СЧ 20 -чугун серый, предел прочности при растяжении 200 МПа. По свойствам серые чугуны можно условно распределить на следующие группы: ферритные и ферритно-перлитные чугуны (марки СЧ 10, СЧ 15) применяют для изготовления малоответственных ненагруженных деталей машин;перлитные чугуны (марки СЧ 20, СЧ 25, СЧ 30) используют для изготовления износостойких деталей, эксплуатируемых при больших нагрузках: поршней, цилиндров, блоков двигателей;модифицированные чугуны (марки СЧ 35, СЧ 40, СЧ 45), получают добавлением перед разливкой в жидкий серый чугун присадок ферросилиция, такие чугуны имеют перлитную металлическую матрицу с небольшим количеством изолированных пластинок графита.Модифицирование серого чугуна магнием, а затем ферросилицием позволяет получать магниевый чугун (СМЧ), обладающий прочностью литой стали и высокими литейными свойствами серого чугуна. Из него изготовляют детали, подвергаемые ударам, воздействию переменных напряжений и интенсивному износу, например коленчатые валы легковых автомобилей. Высокопрочный чугунОтличительной особенностью высокопрочного чугуна являются его высокие механические свойства, обусловленные наличием в структуре шаровидного графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет рабочее сечение металлической основы и, что еще важнее, не оказывает на нее сильного надрезающего действия, благодаря чему вокруг включений графита в меньшей степени создаются концентраторы напряжений. Чугун с шаровидным графитом обладает не только высокой прочностью, но и пластичностью. Получение шаровидного графита в чугуне достигается модифицированием расплава присадками, содержащими Mg, Са, Се и другие редкоземельные металлы.маркируются буквами «В» - высокопрочный, «Ч» - чугун и числом, обозначающим среднее значение предела прочности чугуна при растяжении. Например, ВЧ 100 -высокопрочный чугун, предел прочности при растяжении 1000 МПа (или 100 кг/мм2).Высокопрочный чугун с шаровидным графитом является наиболее перспективным литейным сплавом, с помощью которого можно успешно решать проблему снижения массы конструкций при сохранении их высокой надежности и долговечности. Высокопрочный чугун используют для изготовления ответственных деталей в автомобилестроении (коленчатые валы, зубчатые колеса, цилиндры и др.). Ковкий чугунБелые чугуны характеризуются тем, что у них весь углерод находится в химически связанном состоянии -- в виде цементита. Излом такого чугуна имеет матово-белый цвет. Наличие большого количества цементита придает белому чугуну высокие твердости, хрупкость и очень плохую обрабатываемость режущим инструментом.Высокая твердость белого чугуна обеспечивает его высокую износостойкость, в том числе и при воздействии абразивных сред. Это свойство белых чугунов учитывается при изготовлении из них поршневых колец. Однако белый чугун применяют главным образом для отливки деталей с последующим отжигом на ковкий чугун.Ковкий чугун получают путем отжига белого чугуна определенного химического состава, отличающегося пониженным содержанием графитизирующих элементов (2,4-2,9 % С и 1,0-1,6 % Si), так как в литом состоянии необходимо получить полностью отбеленный чугун по всему сечению отливки, что обеспечивает формирование хлопьевидного графита в процессе отжига. Ковкие чугуны маркируют буквами «К» - ковкий, «Ч» - Чугун и цифрами. Первая группа цифр показывает предел прочности чугуна при растяжении, вторая - относительное его удлинение при разрыве. Например, КЧ 33-8 означает: ковкий чугун с пределом прочности при растяжении 33 кг/мм2 (330 МПа) и относительным удлинением при разрыве 8 %. Различают черносердечный ковкий чугун, получаемый в результате графитизирующего отжига, и белосердечный, получаемый путем обезуглероживающего отжига в окислительной среде. Ковкий чугун используют для изготовления мелких и средних тонкостенных отливок ответственного назначения, работающих в условиях динамических знакопеременных нагрузок (детали приводных механизмов, коробок передач,тормозных колодок, шестерен, ступиц и т. п.). Однако ковкий чугун -- малоперспективный материал из-за сложной технологии получения и длительности производственного цикла изготовления деталей из него.

33 вопрос ТО-технологический процесс,состоящий из совокупности операций нагрева,выдержки и охлаждение.Цель-изменение структуры и свойств

34 вопрос Собственная ТО – включает отжиг 1 и 2 рода,отпуск и старение Термомеханическая обработка (ТМО)-совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате которой формирование окончательной структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластической деформацией

35 вопрос Способы нагревания и охлаждения Отжиг - вид термической обработки, заключающийся в нагреве до определённой температуры, выдержке и последующем, обычно медленном, охлаждении.Цели отжига — снижение твёрдости для повышения обрабатываемости, улучшение структуры и достижение большей однородности металла, снятие внутренних напряжений. Отпуск - нагрев закаленной стали до температур ниже критической точки Ас1 выдержка при этой температуре с последующим охлаждением (обычно на воздухе) . Отпуск является окончательной термической обработкой. Целью отпуска является изменение строения и свойств закаленной стали: повышение вязкости и пластичности, уменьшение твердости, снижение внутренних напряжений Закалка -  термическая обработка материалов, заключающаяся в их нагреве и последующем быстром охлаждении с целью фиксации высокотемпературного состояния материала или предотвращения (подавления) нежелательных процессов, происходящих при его медленном охлаждении. Закалка возможна только для тех веществ, равновесное состояние которых при высокой температуре отличается от равновесного состояния при низкой температуре (например, кристаллической структурой). Закалка эффективна только в том случае, если реально достижимая скорость охлаждения достаточна для того, чтобы не успели развиться процессы, подавление которых является целью Закалка Структуры, возникающие в результате Закалка, лишь относительно устойчивы, при нагреве они переходят в более устойчивое состояние. 

36 вопрос При нагреве стали выше критических точек с образованием аустенита исходной структурой чаще всего является смесь феррита и цементита – перлит.В реальных условиях нагрева при термообработке превращения перлита в аустенит запаздывает и имеет место перегрев.Если нагрев проводится при температуре выше температуры перегрева и сталь длительное время находится при этой температуре в окислительной атмосфере печи,то может возникнуть неисправимый дефект-пережог

38 вопрос Перлит – эвтектоидная смесь феррита и цементита Сорбит – мелкие частицы феррита Троостит –мельчайшая смесь феррита и цементита Бейнит – смесь феррита и карбида Мартенсит – перенасыщенный твердый раствор углерода в α-железе

40 вопрос Первая стадия углеродистой закаленной стали 200° С из мартенсита выделяются частицы карбидной фазы,структура отпущенного мартенсита 200-300 °С распад остаточного аустенита в смесь α-твердого раствора с необособившихся частиц карбидов(отпущенный мартенсит) 300-400 °С углерод полностью выделяется из α-твердого раствора с образование Fe3C 400 °С мелкие включения феррита и цементита – троостит 600 °С коагуляция корбидов, рекристаллизациямартенсита,структура– сорбит

41 вопрос Отжиг и нормализация Отжиг-ТО,в процессе которой производится нагрев до требуемой температуры,с последующей выдержкой и медленном охлаждении в печи для получения однородной, равновесной, менее твердой структуры,свободной от остаточных напряжений Нормализация - при проведении отжига и выдержке,охлаждение проводится на воздухе Виды отжига:Отжиг 1 рода,назкий отжиг – ниже температуры Ас1(происходит снижение внутренних напряжений) Отжиг 2 рода,неполный отжиг(температура между Ас1 и Ас3),полный отжиг(выше температуры Ас3) Высокий отжиг(значительно больше температуры Ас3) Цель отжига – повышение вязких свойств стали

42 вопрос Закалка изделий из углеродистой стали Закалка – вид то,заключающийся в нагреве выше критических точек,выдержке и быстром охлаждении в жидкости Критическая скорость охлаждения – минимальная скорость охлаждения,обеспичивающая получение мартенсита

44вопрос Закаливаемость - способность стали к повышению твердости Прокаливание - способность стали закаливаться на определенную глубину. Закаливаемость — способность стали принимать закалку, т.е. приобретать при закалке детали высокую твердость. Закаливаемость определяется содержанием углерода в стали. Низкоуглеродистые стали (до 0,20 % С) практически не закаливаются, так как при закалке их твердость не повышается. Под прокаливаемостью понимают глубину прокаливания закаленной зоны. За глубину прокаленной зоны принято считать расстояние от поверхности до слоя, где в структуре будут примерно одинаковые объемы мартенсита и троостита. Чем медленнее происходит превращение аустенита в перлит, т.е. чем больше устойчивость переохлажденного аустенита, чем меньше критическая скорость закалки, тем больше прокаливаемость.Укрупнение зерен аустенита при нагреве под закалку такжеспособствует увеличению прокаливаемости. Факторы, которые уменьшают устойчивость переохлажденного аустенита (нерастворимые частицы, неоднородность аустенита и др.), уменьшают прокаливаемость. Характеристикой прокаливаемости является критический диаметр—максимальное сечение, прокаливающееся в данном охладителе на глубину, равную радиусу изделия. Изделия, имеющие размеры меньше критического диаметра, прокаливаются в данном охладителе насквозь. Зная критический диаметр, можно правильно выбрать сталь для деталей определенных размеров и назначения. Прокаливаемость каждой стали определяют экспериментально. Наиболее простой способ - стандартный метод торцовой закалки. Прокаливаемость углеродистых сталей находится в прямой зависимости от содержания углерода. Для сталей с 0,8 % С это примерно 5-6 мм. Легирующие элементы, увеличивая устойчивость переохлажденного аустенита, уменьшают критическую скорость закалки (исключение составляет кобальт). Поэтому некоторые легированные стали в результате охлаждения на воздухе приобретают структуру мартенсита. С уменьшением Vкр снижаются внутренние напряжения и вероятность появления брака. Однако понижение температуры мартенситного превращения способствует увеличению количества остаточного аустенита в стали после закалки.С введением в сталь легирующих элементов закаливаемость и прокаливаемость возрастают. Особенно сильно увеличивают прокаливаемость молибден и бор (кобальт и в этом случае действует противоположно). Карбидообразующие элементы повышают прокаливаемость только в том случае, если они при нагреве растворились в аустените. В противном случае указанные элементы являются центрами распада аустенита ипрокаливаемость будет даже ухудшаться. Температура нагрева легированных сталей под закалку по сравнению с углеродистыми сталями выше. Это объясняется, во-первых, тем, что большинство легирующих элементов повышает температуру критических точек А1 и A3. Во-вторых, диффузионные процессы в легированных сталях протекают значительно медленнее, так как легирующие элементы образуют твердые растворы замещения, а углерод — внедрения. Температуру закалки обычно выбирают на 50—60 °С выше точки Ас3 этих сталей и увеличивают продолжительность выдержки при температуре закалки. Такой нагрев способствует также диссоциации карбидов и лучшей растворимости легирующих элементов в аустените.В результате закалки легированных сталей получают структуру легированного мартенсита, который содержит не только углерод, но и легирующие элементы. Это оказывает существенное влияние на превращения, протекающие при отпуске.Нагрев легированных сталей при закалке до более высоких температур не приводит к росту зерна, так как все легирующие элементы (кроме марганца и бора) уменьшают склонность к росту зерна. Элементы, образующие слабо диссоциирующие при нагреве карбиды, способствуют измельчению зерна аустенита.Легированные стали обладают пониженной теплопроводностью, поэтому для уменьшения перепада температуры по сечению их следует нагревать медленно. Это уменьшает внутренние напряжения, которые могут вызвать коробление или образование трещин при нагреве. Вследствие низкой теплопроводности увеличивается и продолжительность выдержки при заданной температуре. Прокаливаемость стали. Если, например, сверло диаметром 50 мм, изготовленное из инструментальной углеродистой стали, закалить в воде, а затем замерить твердость его в поперечном сечении, то окажется, что во внутренней зоне, расположенной вдоль оси сверла (сердцевине), твердость будет почти такой же, как до закалки, в то время как в наружной зоне, расположенной у поверхности, твердость резко повысится. Проверив затем микроструктуру, можно будет убедиться, что в сердцевине она будет перлитного типа, а у поверхности — мартенситного. Несквозная закалка объясняется неравномерным охлаждением детали при закалке: поверхность всегда охлаждается быстрее, чем сердцевина. Неравномерность охлаждения вызывается различными условиями теплоотвода у поверхности и в сердцевине. При погружении раскаленной детали в закалочную среду поверхность, соприкасаясь с холодной жидкостью, охлаждается с большой скоростью, в то время как отвод теплоты от сердцевины затруднен толщей горячего металла, и потому она охлаждается медленно. В результате скорость охлаждения поверхности оказывается выше критической, и поверхность закаливается, а скорость охлаждения сердцевины получается ниже критической, и последняя не закаливается. Очевидно, можно представить себе, что на некоторой глубине от поверхности скорость охлаждения будет равна критической. Тогда ясно, что слои металла, расположенные на большей глубине, не закалятся, а слои, расположенные на меньшей глубине, т. е. ближе к поверхности, закалятся. 1) при использовании легированных сталей можно получить сквознуюпрокаливаемость в деталях большого сечения, которые невозможно закалить насквозь при изготовлении их из углеродистой стали; 2) применение легированной стали вместо углеродистой позволяет снизить скорость охлаждения, необходимую для закалки, и использовать в качестве охладителя взамен воды — масло. В результате снижаются закалочные напряжения, уменьшается коробление и опасность образования трещин. Наряду с химическим составом на прокаливаемость оказывают влияние и некоторые другие факторы: однородность аустенита, отсутствие в нем карбидов и иных примесей и включений, величина зерна и др. Чем однороднее аустенит и больше размер его зерен, тем выше будет прокаливаемость.

45вопрос Способы закалки. Закалка в одном охладителе, Закалка в двух средах, Струйчатая закалка, Закалка самоотпуском, Ступенчатая закалка, Изотермическая закалка, Закалка с обработкой холодом. Закалка в одном охладителе - заключается в нагреве стали выше температур, соответствующих критической точке Ac1 и Ac3 с последующей выдержкой и охлаждением со скоростью выше критической в одном охладителе. Закалка в двух средах- заключается в том, что нагретую до необходимой температуры деталь, выдержанную при этой температуре, переносят в охладитель, обеспечивающий такую скорость охлаждения, которая предотвратила бы распад переохлажденного аустенита в области температур минимальной устойчивости аустенита, например в воду, а затем переносят в менее интенсивно охлаждающую среду, в которой собственно и происходит закалка. Струйчатая закалка - этот способ применяется в том случае, когда нет необходимости закаливать деталь на одинаковую твердость по всей поверхности. Закалка самоотпуском- этот способ практически несет то же функциональное назначение, что и струйчатая закалка, например зубило, нагревают до заданной температуры и переносят в охлаждающую среду только рабочую часть, затем после извлечения из закалочной среды проводят выдержку на свободном воздухе в результате которой рабочая часть отпускается за счет нагрева от нерабочей, неохлажденной части. Ступенчатая закалка - этот способ является разновидностью способа закалки в двух средах. Изотермическая закалка - деталь помещают в охлаждающую среду с температурой несколько выше температуры начала мартенситного превращения и выдерживают в этой среде до полного завершения превращения. Закалка с обработкой холодом - после закалки в высокоуглеродистых и особенно легированных сталей в структуре сохраняется аустенит остаточный, количество которого может достигать 40%. Присутствие Aост объясняется тем, что в указанных сталях положение точек конца мартенситного превращения переходит в область отрицательных температур и охлаждающей способности закалочных сред недостаточно, чтобы достигнуть температуру Мк, поэтому детали, изготавливаемые из этих сталей при необходимости, подвергают обработке холодом. Обработка холодом заключается в том, что изделие после закалки на мартенсито-аустенит подвергается охлаждению до низких температур (ниже 0° С). При этом часть остаточного аустенита переходит в мартенсит вследствие установленной закономерности в развитии превращения аустенита по мере понижения температуры.Даже при охлаждении до температуры жидкого воздуха (-180°) небольшой процент аустенита иногда сохраняется. Несмотря на это, переход большей части остаточного аустенита в мартенсит оказывает заметное влияние и приводит к следующим результатам: твердость образца, в целом, повышается и в связи с этим в режущих сталях повышаются их режущие качества; объем увеличивается и стабилизуется (важно для калибров и точных изделий); при старении уничтожается этап распадения аустенита и процесс низкотемпературного отпуска упрощается; в легированных сталях, склонных к закалке на аустенит обработка холодом может способствовать существенному повышению твердости. В связи с этими результатами обработка холодом применяется в соответствующих случаях (для повышения твердости и режущей способности быстрорежущей стали, при закалке инструментальных нержавеющих сталей и пр.).

46вопрос Отпуск закаленных деталей Отпуск закаленных деталей уменьшает их хрупкость, повышает вязкость и снимает внутренние напряжения. В зависимости от температуры нагрева различают низкий, средний и высокий отпуск. Низкий отпуск применяют главным образом при обработке измерительного и режущего инструмента. Закаленную деталь нагревают до температуры 150-250 С, выдерживают при этой температуре, а затем охлаждают на воздухе. В результате такой обработки материал, теряя хрупкость, сохраняет высокую твердость и кроме того, в нем значительно снижаются внутренние напряжения возникающие при закалке. Средний отпуск применяют в тех случаях, когда хотят придать детали пружинящие свойства и достаточно высокую прочность при средней твердости. Для этого деталь нагревают до 300-500 С и затем медленно охлаждают. Высокому отпуску подвергают детали, у которых необходимо полностью снять все внутренние напряжения. В этом случае температура нагрева еще выше - 500-600 С. Термообработку (закалку и отпуск) деталей простой формы (валики, оси, зубила, кернеры) часто делают за один раз. Нагретую до высокой температуры деталь опускают на некоторое время в охлаждающую жидкость, затем вынимают. Отпуск происходит за счет тепла, сохранившегося внутри детали.

47вопрос Поверхностная закалка применяется с целью получения высокой твердости в поверхностном слое детали с сохранением вязкой сердцевины. Доэвтектоидные стали нагревают до температуры выше критической точки Ас3 на 30-50 °С. Если такие стали нагреть до температуры между критическими точками Ас1 и Ас3 и охладить, то в структуре закаленной стали, кроме мартенсита, будет присутствовать феррит, что существенно ухудшает свойства. Такая закалка называется неполной. Заэвтектоидные стали при закалке нагревают до температуры Ас1+ (40,60 °С). После охлаждения с таких температур получают структуру мартенсита с включением вторичного цементита, который повышает твердость и износостойкость режущего инструмента. Если заэвтектоидную сталь нагреть выше критической точки Аст, то после закалки получится дефектная структура грубоигольчатого мартенсита. Время нагрева зависит от размеров детали и теплопроводности стали, и его обычно определяют экспериментально Продолжительность выдержки при температуре закалки выбирают такой, чтобы полностью произошла гомогенизация образовавшегося аустенита.Для получения нужной структуры детали охлаждают с различной скоростью, которая зависит от охлаждающей среды, формы изделия и теплопроводности стали. Режим охлаждения при закалке должен исключать по возможности возникновение больших остаточных закалочных напряжений, но в то же время он должен обеспечить необходимую глубину закаленного слоя. Охлаждающую способность различных сред оценивают скоростью охлаждения в области температур наименьшей устойчивости переохлажденного аустенита (650-550 °С) и в области мартенситного превращения (300-200 °С). В последнем интервале желательно замедленное охлаждение, так как в этом случае уменьшаются и термические, и структурные напряжения. Выбирая охлаждающие среды, следует учитывать закаливаемость и прокаливаемость данной стали.

48вопрос Химико-термическая обработка (ХТО) стали - совокупность операций термической обработки с насыщением поверхности изделия различными элементами (углерод, азот, алюминий, кремний, хром и др.) при высоких температурах. Поверхностное насыщение стали металлами (хром, алюминий, кремний и др.), образующими с железом твердые растворы замещения, более энергоемко и длительнее, чем насыщение азотом и углеродом, образующими с железом твердые растворы внедрения. При этом диффузия элементов легче протекает в решетке альфа-железо, чем в более плотноупакованной решетке гамма-железо.Химико-термическая обработка повышает твердость, износостойкость, кавитационную, коррозионную стойкость. Химико-термическая обработка, создавая на поверхности изделий благоприятные остаточные напряжения сжатия, увеличивает надежность, долговечность.

49вопрос Цементация стали - химико-термическая обработка поверхностным насыщением малоуглеродистой (С<0,2%) или легированных сталей при температурах 900...950°С - твердым (цементация твердым карбюризатором), а при 850...900°С - газообразным (газовая цементация) углеродом с последующей закалкой и отпуском. Цель цементации и последующей термической обработки - повышение твердости, износостойкости, также повышением пределов контактной выносливости поверхности изделия при вязкой сердцевине, что обеспечивает выносливость изделия в целом при изгибе и кручении.Детали, предназначенные для цементации, сначала очищают. Поверхности не подлежащие науглероживанию, покрывают специальными предохранительными противоцементными обмазками. 1-ый состав простейшей обмазки: огнеупорная глина с добавлением 10% асбестового порошка, вода. Смесь разводят до консистенции густой сметаны и наносят на нужные участки поверхности изделия. После высыхания обмазки можно производить дальнейшую цементацию изделия. 2-ой состав применяемой обмазки: каолин - 25%, тальк - 50%: вода - 25%. Разводят эту смесь жидким стеклом или силикатным клеем. Цементацию делают после полного высыхания обмазки. Вещества, которые входят в состав обмазки, называют карбюризаторами. Они бывают твердые, жидкие и газообразные.

50 вопрос Азотирование стали - химико-термическая обработка поверхностным насыщением стали азотом путем длительной выдержки ее при нагреве до б00...650°С в атмосфере аммиака NН3. Азотированные стали обладают очень высокой твердостью (азот образует различные соединения с железом, алюминием, хромом и другими элементами, обладающие большей твердостью, чем карбиды). Азотированные стали обладают повышенной сопротивляемостью коррозии в таких средах, как атмосфера, вода, пар.Азотированные стали сохраняют высокую твердость до сравнительно высоких температур (500...520°С). Азотированные изделия не коробятся при охлаждении, так как температура азотирования ниже, чем цементации. Азотирование сталей широко применяют в машиностроении для повышения твердости, износостойкости, предела выносливости и коррозионной стойкости ответственных деталей, например, зубчатых колес, валов, гильз цилиндров.

51 вопрос Цианирование стали - химико-термическая обработка с одновременным поверхностным насыщением изделий азотом и углеродом при повышенных температурах с последующими закалкой и отпуском для повышения износо- и коррозионной устойчивости, а также усталостной прочности. Может проводиться в газовой среде при температуре 840..860°С - нитроцианирование, в жидкой среде - при температуре 820...950°С - жидкостное цианирование в расплавленных солях, содержащих группу NaCN.Эффективно для инструментальных (в частности, быстрорежущих) сталей; она используется для деталей сложной конфигурации, склонных к короблению. Однако, поскольку этот процесс связан с использованием токсичных цианистых солей, он не нашел широкого распространения.

52вопрос Легированная сталь — сталь, которая кроме обычных примесей содержит элементы, специально вводимые в определенных количествах для обеспечения требуемых физических или механических свойств. Эти элементы называются легирующими.Легирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др. Маркировка Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали. Г – марганец;С-кремний;Х-хром;Н-никель;Д-медь;А-азот;Ф-ванадий;Б-ниобий;В-вольфрам;Е-селен;К-кобальт; Л-бериллий;М-молибден;Р-бор;Т-титан; Стоящие за буквой цифра обозначает среднее содержание элемента в процентах. Если элемента содержится менее 1 %, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента, если цифра одна, то содержание углерода в десятых долях процента. Дополнительные обозначения в начале марки:Р — быстрорежущая;Ш — шарикоподшипниковая; Исключения:содержание в шарикоподшипниковых сталях хрома в десятых долях процента(например ШХ4 — Cr 0,4 %)в марке быстрорежущей стали, цифра после «Р» — содержание вольфрама в %, и во всех быстрорежущих сталях содержание хрома 4 %. Буква А в сере­дине марки стали показывает содержание азота, а в конце — сталь высококачественная.В высоколегированных сплавах число, обозначающее массовую долю элемента ставится перед буквой элемента, а не после. Основными преимуществами легированных конструкционных сталей перед углеродистыми являются более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость, более высокая прокаливаемость и возможность применения более мягких охладителей после закалки, устойчивость против отпуска за счет торможения диффузионных процессов. Легированные стали обладают более высоким уровнем механических свойств после термической обработки. Поэтому детали из легированных сталей, как правило, должны подвергаться термической обработке.

54вопрос Влияние легирующих элементов на кинетику распада аустенитаКинетика распада аустенита определяет поведение стали при термической обработке. Легирующие элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения, За исключением Со, который ускоряет превращение, все элементы замедляют его.Карбидообразующие элементы вносят не только количественные, но и качественные изменения в кинетику изотермического превращения. Легирующие элементы при разных температурах по-разному влияют на скорость распада аустенита: 700 - 500 °С (образование перлита) - замедляют превращение; 500 - 400°С - весьма значительно замедляют превращение; 400 - 300 °С (образование бейнита) - ускоряют превращение.Таким образом, в сталях, легированных карбидообразующими элементами (Cr,Mo, W и др.), наблюдаются два максимума скорости изотермического распада аустенита,разделенных областью относительной устойчивости переохлажденного аустенита. Изотермический распад аустенита имеет два явно выраженных интервала превращений -M3C,M23C6,MC,M7C3,M6C - карбиды I группы;M2C - карбиды II группы превращение в пластинчатые (перлитное превращение) и превращение в игольчатые (бейнитное превращение) структуры. Практически наиболее важной является способность легирующих элементов замедлять скорость распада аустенита в районе перлитного превращения, что выражается в смещении вправо линии на диаграмме изотермического распада аустенита. Это способствует более глубокойпрокаливаемости и переохлаждению аустенита до интервала мартенситного превращения при более медленном охлаждении, например, при охлаждении в масле или на воздухе. Наиболее сильно увеличивают прокаливаемость хром, никель, молибден, марганец, поэтому они входят в состав большинства конструкционных легированных сталей. Прокаливаемость стали может быть особенно увеличена при совместном легировании несколькими элементами. Таково, например, совместное действие никеля и хрома. Очень эффективно действует молибден при введении его в хромоникелевую сталь.Своеобразно влияют на кинетику распада такие сильные карбидообразователи, как Ti, V, Nb и отчасти W. Так как элементы образуют труднорастворимые карбиды, то при обычных температурах закалки (800-900 °С) они остаются связанными в карбиды и не переходят в аустенит. В результате этого прокаливаемость стали уменьшается, так как карбиды действуют как готовые центры кристаллизации перлита. При высоком нагреве под закалку эти карбиды уже растворяются в аустените, что увеличивает прокаливаемость.

55вопрос Термическая обработка легированных сталей по сравнению с обработкой углеродистых имеет ряд технологических особенностей. Эти особенности состоят в различии температур и скорости нагрева, длительности выдержки при этих температурах и способе охлаждения. Теплопроводность легированных сталей меньше теплопроводности углеродистых сталей. Поэтому особенно осторожно следует нагревать детали из стали, содержащей такие элементы, как, например, вольфрам. Критические температуры у одних легированных сталей выше, а у других — ниже, чем у углеродистой стали. Все легирующие элементы можно разбить на две группы: элементы, повышающие критические точки Асх и Асг, а следовательно, и температуры нагрева при термической обработке (отжиге, нормализации и закалке), и элементы, понижающие критические точки. К первой группе относятся Си, V, 51, Тл и др. В связи с этим отжиг, нормализация и закалка сталей, содержащих перечисленные элементы, производятся при более высоких температурах, чем отжиг, нормализация и закалка углеродистых сталей. Ко второй группе элементов относятся Мп и т. п. Основными преимуществами легированных конструкционных сталей перед углеродистыми являются более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость, более высокая прокаливаемость и возможность применения более мягких охладителей после закалки, устойчивость против отпуска за счет торможения диффузионных процессов. Легированные стали обладают более высоким уровнем механических свойств после термической обработки. Поэтому детали из легированных сталей, как правило, должны подвергаться термической обработке. Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность. Легир. эл-ты измен.кинетику распада, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость. Все легир. эл-ты сниж. тем-ный интервал М превращения.

56вопрос Классификация легированных сталейЛегированные стали классифицируют: по структуре в равновесном состоянии;по структуре после охлаждения на воздухе;по количеству легирующих элементов и по назначению. По равновесной структуре стали делятся на доэвтектоидные стали с избыточным ферритом в структуре, эвтектоидные с перлитной структурой, заэвтектоидные с избыточными карбидами, ледебуритныестали в структуре которых присутствуют первичные карбиды, выделившиеся из жидкой стали.Учитывая, что некоторые элементы резко сужают или расширяют область  - железа, кроме этих групп сталей различают аустенитные и ферритные стали. По структуре после охлаждения на воздухе различают перлитные стали, характеризующиеся невысокой устойчивостью переохлажденного аустенита; мартенситные стали с высокой устойчивостью аустенита и аустенитные стали, сохраняющие аустенитную структуру при комнатной температуре. По количеству легирующих элементов различают низколегированные стали, содержащие до 2,5% легирующих, среднелегированные - 2,5-10% и высоколегированные стали, содержащие более 10% легирующих элементов. По назначению различают три группы сталей: конструкционные (машиностроительные и строительные), инструментальные (штамповые, для режущего и мерительного инструмента) и стали с особыми физическими и химическими свойствами (коррозионностойкие, жаропрочные, электротехнические, магнитные и др.). Маркировка легированных сталей Легирующие элементы обозначают следующими буквами русского алфавита: X - хром, Н - никель, В - вольфрам, М - молибден, Ф - ванадий, Т - титан, Ю - алюминий, Д - медь, Г - марганец, С - кремний, К - кобальт, Ц, - цирконий, Р - бор, Б - ниобий. Буква А в середине марки стали показывает содержание азота, а в конце - сталь высококачеств. Для конструкционных марок стали первые две цифры показывают содержание углерода в сотых долях процента. Если содержание легирующего элемента больше 1%, то после буквы указывается его среднее значение в целых процентах. Если содержание легирующего элемента около 1% или меньше, то после соответствующей буквы цифра не ставится.Например, сталь 18ХГТ содержит: 0,18% С, 1% Сr, 1% Мn, около 0,1% Тi; В инструментальных сталях в начале обозначения марки стали ставится цифра, показывающая содержание углерода в десятых долях процента. Начальную цифру опускают, если содержание углерода около 1 % или более. Например, сталь ЗХ2В8Ф содержит, 0,3% С, 2% Сr, 8%W,V. Для некоторых групп сталей применяют дополнительные обозначения. Марки автоматных сталей начинаются с буквы А, подшипниковых - с буквы Ш, быстрорежущих - с буквы Р, электротехнических - с буквы Э, магнитно-твердых - с буквы Е.

58вопрос Легированные конструкционные сталиПо назначению легированные стали можно подразделять на 3 группы: конструкционные, инструментальные стали и стали с особыми свойствами. В основу классификации первых двух групп положено содержание углерода. Конструкционные стали относятся к перлитному классу. Стали с С<0,25% используют как цементуемые, стали с 0,2-0,55% С применяют в термообработанном состоянии. Хромистая сталь - обладает высокой износостойкостью и невысокой стоимостью. Хром в ней 0,7-1,1%. Недостатки – отпускная хрупкость. Марганцовистая сталь - 0,7-1,8% Mn, который менее дефицитный. Mарганец увеличивает прокаливаемость стали. Эти стали даже после нормализации обладает повышенной прочностью, упругостью, износостойкостью. Недостатки - склонность к росту зерен при перегреве, образованию закалочных трещин и отпускная хрупкость. При высоком содержании Mn стали относятся к сталям с особыми свойствами. Никелевая сталь - дорогие легированные стали. Ni увеличивает прочность и вязкость стали, сильно повышает прокаливаемость. Ввиду дефицитности Ni заменяют первыми тремя элементами. Кремнистая сталь - обладает высоким пределом упругости и повышенной прочностью. Применяется для рессор, пружин, мостов, при 1-4% Si и соответствующей ТО применяется как трансформаторная сталь. Хромоникелевая сталь - высокие механические свойства, глубокая прокаливаемость в масле, повышенная ударная вязкость. Недостатки: - хрупкость при высоком отпуске, поэтому дополнительно легируют Mo или W. Хроммарганцевая сталь - заменитель хромоникелевой стали, глубокая прокаливаемость обеспечивается марганцем. По области применения стали подразделяются на: автоматные, строительные, цементуемые, улучшаемые, высокопрочные, рессорно-пружинные, подшипниковые и износостойкие. Стали для строительных конструкций. Стали с содержанием углерода <0,25% используют как котельные, строительные и для деталей машин, подвергаемые цементации. Низкое содержание углерода в этих сталях обусловлено тем, что строительные и котельные элементы соединяют сваркой, а углерод ухудшает свариваемость. Более высокая прочность по сравнению с углеродистыми сталями достигается упрочнением феррита легирующими элементами в небольших количествах: Cr, Ni, Mn, Cu и др. К низколегированным строительным сталям относятся: 14Г2, 17ГС, 14ХГС, 15ХСНД. Последняя работает в конструкциях до 60оС без охрупчивания. Кроме того, введение этих легирующих элементов увеличивает коррозионную стойкость в атмосферных условиях.  Добавление небольшого количества V, Nb (до 0,1%) приводит к дополнительному упрочнению за счет карбонитридов и измельчения зерен. Это: 14Г2АФ, 17Г2АФБ сВ=450 МПа после нормализации. Дополнительное упрочнение может быть достигнуто контролируемой прокаткой - деформация при более низкой температуре в конце (800-900оС) с увеличением степени деформации в последних проходах, что дает измельчение зерен и дисперсном упрочнении карбонитридами. Автоматная сталь, сталь с повышенным содержанием серы и фосфора, предназначенная для изготовления деталей на металлорежущих скоростных станках-автоматах и полуавтоматах. Автоматная сталь производится в виде прутков и содержит в %: 0,08—0,45 углерода, 0,15—0,35 кремния, 0,6—1,55 марганца, 0,08—0,30 серы, 0,05—0,16 фосфора. Повышенное содержание серы приводит к образованию включений (сульфида марганца и др.), расположенных вдоль волокон, что облегчает резание и способствует дроблению и лёгкому отделению стружки. Для этих же целей Автоматная сталь иногда легируют свинцом и теллуром. Механические свойства Автоматная сталь вдоль волокон (в зависимости от марки стали и диаметра прутка) характеризуются следующими показателями: горячекатаные прутки — предел прочности sв= 420—750Мн/м2 (42—75 кгс/мм2), относительное удлинение d = 14—22%, для холоднотянутых нагартованных прутков sв = 520—840 Мн/м2 (52—84 кгс/мм2), d = 6—17%. Механические свойства Автоматная сталь в поперечном волокну направлении существенно понижены. Пластичность и вязкость Автоматная сталь, благодаря присутствию серы и фосфора, ниже, чем у обычных углеродистых сталей. Свариваемость плохая. Детали изАвтоматная сталь обычно применяются без термической обработки или только с отпуском для снятия напряжений. Автоматная сталь используются главным образом для изготовления болтов, гаек, некоторых деталей автомобилей, приборов и пр.

59вопрос Цементуемые сталиДля деталей, работающих в условиях поверхностного износа (валы и др.) используют малоуглеродистые стали  с 0,1-0,3%С, подвергая их цементации. Цементуемые стали легируют Cr, Ni. Чем выше требования, тем сложнее состав. Для небольших деталей применяют хромистые стали как 15Х, 20Х с 1% Cr. При содержании Cr>1,5% в цементованном слое повышается концентрация углерода и образуется легированный цементит (Fe,Cr)3C, увеличивается глубина эвтектоидного слоя, а после термообработки - глубина закаленного слоя. Дополнительное легирование 0,1-0,2% V позволяет сформировать более мелкое зерно, что улучшает пластичность и вязкость. Для деталей средних размеров и с повышенными нагрузками используют стали с добавлением Ni: 20ХН, 12ХН3А. При этом несколько уменьшается глубина цементованного слоя, но увеличивается глубина закаленного слоя. Никель препятствует росту зерен и образованию грубой цементитной сетки и положительно влияет на свойства стали в сердцевине. Иногда дефицитный никель заменяют марганцем с небольшим количеством титана (0,006-0,12%): 18ХГТ, 30ХГТ. В цементуемые стали Ti вводят только для измельчения зерен. При большем содержании он уменьшает глубину цементованного закаленного слоя и прокаливаемость.Для крупных деталей используют высоколегированные цементуемые стали как 12Х2Н4, 18Х2Н4В , наиболее высокопрочные из цементуемых сталей. В последние годы для повышения прочности стали дополнительно легируют бором (0,002-0,005%): 15ХР, 20ХГР. Последняя применяется взамен 12ХН3А для экономии никеля. При термообработке нужно иметь ввиду, что бор, увеличивая прокаливаемость, способствует росту зерен, поэтому эти стали дополнительно легируют Ti, Zr.

60вопрос Улучшаемые стали Это среднелегированные стали с 0,3-0,5% С, подвергаемые закалке и высокому отпуску. После такой термообработки сталь приобретает структуру сорбита, хорошо работает на удар. Углеродистые улучшаемые стали обладают небольшой прокаливаемостью (до 10 мм), поэтому механические свойства к центру понижаются. Закалку сталей обычно проводят в масло, отпуск при 550-650оС. Имеют высокую прочность, вязкость, малочувствительны к концентраторам. Улучшаемые стали условно можно разбить на 5 групп, с увеличением номера группы растет степень легирования и прокаливаемость. I-    углеродистые стали 35, 40, 45, имеющие критический диаметр D95 до 10мм, D95 – диаметр, при котором достигается сквознаяпрокаливаемость и в структуре содержится не менее 95% мартенсита. II-  хромистые 30Х, 40Х - D95=15-20 мм; недостаток - склонность к отпускной хрупкости 2-рода. Эти стали требуют быстрое охлаждение после отпуска. III- хромистые стали, дополнительно легированные  1 или 2 элементами : 30ХМ, 40ХГ, 30ХГТ, D95=20-25 мм. Для увеличения прокаливаемости дополнительно вводят Mn (40ХГ), бор, молибден (30ХМ) вводят для снижения склонность к отпускной хрупкости 2-рода. Стали 20ХГС, 30ХГС, называемые хромансилями, обладают высокой прочностью до 1200 МПа, КСU =0,4 МДж/м2. Недостатки - склонность к отпускной хрупкости 2-рода. IV- хромоникелевые стали содержащие до 1,5% Ni - 40ХН, 40ХНМ. Их критический диаметр D95=40 мм. Стали обладают большим запасом повышенной вязкости, чем предыдущие. V- комплекснолегированные с 3-4% Ni : 38ХН3М, 38ХН3МФА. Сравнительно дорогие, но относятся к лучшим маркам улучшаемых сталей. D95=100 мм и более, низкая склонность хрупкому разрушению. Недостаток - трудно обрабатываются резанием.

61вопрос Пружинно-рессорные сталиОсобенность работы пружин, рессор и упругих элементов состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим пружинные сплавы дополнительно к другим свойствам, должны обладать высоким сопротивлением малым пластическим деформациям. Рессорно-пружинные углеродистые и легированные стали имеют высокий модуль упругости, ограничивающий упругую деформацию. Они недорогие и достаточно технологичные, применяются для изготовления жестких (силовых) упругих элементов в авто- и тракторостроении, железнодорожном транспорте, станкостроении, для силовых упругих элементов приборов. Часто эти материалы называют пружинными сталями общего назначения. Стали должны иметь высокие пределы упругости, выносливости и релаксационную стойкость. Этим требованиям удовлетворяют стали с повышенным содержанием углерода (0,5-0,7%), которые подвергаютзакалке и среднему отпускупри температуре 420-520°С, образуется структура троостита. Углеродистые стали (65, 70, 75, 80, 85, 6ОГ, 65Г, 70Г) характеризуются невысокой релаксационной стойкостью, особенно при нагреве. Они не пригодны для работы при температурах выше 100°С. Из-за низкой прокаливаемости, из них изготавливают пружины небольшого сечения. В =1000-1200 МПа, =5-8%. Легированные рессорно-пружинные стали относятся к перлитному классу. Основными легирующими элементами в них являются кремний (1-З%), марганец (1%), а в сталях более ответственного назначения - хром (1 %), ванадий (0,15%) и никель (1,7%). Легирование (за исключением кремния и марганца) мало влияет на предел упругости - главное свойство этих сталей. Более существенно оно проявляется в повышении прокаливаемости, релаксационной стойкости, предела выносливости. Дешевые кремнистые стали 55С2, 60С2, 70СЗА стойки к росту зерна при нагреве под закалку, но склонны к обезуглероживанию - опасному поверхностному дефекту, снижающему предел выносливости. В кремнемарганцевой стали 60СГА этот недостаток выражен менее сильно. В =1300-1800 МПа, 02 =1100-1600 МПа, =5-8%. Стали 50ХФА, 50ХГФА, которые по сравнению с кремнистыми и кремнемарганцевой сталями подвергают более высокому нагреву при отпуске (520°С), обладают теплостойкостью, повышенной вязкостью, меньшей чувствительностью к надрезу. Они предназначены для рессор легковых автомобилей, клапанных и других пружин ответственного назначения, которые могут работать при температурах до 300°С. Стали 60С2ХА и 60С2Н2А применяются для крупных тяжелонагруженных и особо ответственных пружин и рессор. Механические свойства сталей определяются содержанием углерода и температурой отпуска. Отпуск проводят при температуре несколько более высокой, чем та, которая отвечает максимальному пределу упругости, что необходимо для повышения пластичности и вязкости. Наиболее высокие механические свойства имеют стали 70СЗА, 60С2ХА и 60С2Н2А: в=1800 МПа; т= 1600 МПа: >5%, >20%. Предел упругости составляет упр=880-1150 МПа. а твердость HRC 38-48. При такой прочности и твердости стали чувствительны к концентраторам напряжений, поэтому на сопротивление усталости большое влияние оказывает состояние поверхности. При отсутствии поверхностных дефектов (обезуглероживания, окалины, грубых рисок и др.) предел выносливости сталей при изгибе не ниже 500 МПа, а при кручении - 300 МПа. Для уменьшения чувствительности к концентраторам напряжений готовые пружины и листы рессор подвергают поверхностному наклепу обдувкой дробью. После упрочнения дробью предел выносливости увеличивается в 1,5-2 раза.

62вопрос Подшипниковая сталь. Подшипники качения работают, как правило, при низких динамических нагрузках, что позволяет изготовлять их из сравнительно хрупких высокоуглеродистых сталей после сквозной закалки и низкого отпуска. Для изготовления шариков, роликов и колец подшипников применяют недорогие технологичные хромистые стали ШХ4, ШХ15, ШХ15ГС и ШХ20ГС, содержащие примерно 1% С. В обозначении марок буква Ш означает шарикоподшипниковую сталь; Х - наличие хрома; цифра - его массовую долю в процентах (0,4; 1,5;2,0); С, Г - легирование кремнием (до 0,85%) и марганцем (до 1,7%). Сталь поставляют после сфероидизирующего отжига со структурой зернистого перлита (НВ 1790-2170) и повышенными требованиями к качеству металла. В стали строго регламентированы карбидная неоднородность и загрязненность неметаллическими включениями.Для изготовления высокоскоростных подшипников применяют стали после электрошлакового переплава (к марке таких сталей добавляют букву Ш, например, ШХ15-Ш), отличающиеся наиболее высокой однородностью структуры. Такие стали необходимы также для изготовления высокоточных приборных подшипников.Детали подшипников подвергают типичной для зазвтектоидных сталей термической обработке: неполной закалке от 820-850°С в масло и низкому отпуску при 150-170°С. После закалки в структуре сталей сохраняется остаточный аустенит (8-15%, превращение которого может вызывать изменение размеров деталей подшипников. Для их стабилизации прецизионные подшипники обрабатывают холодом при -70-80°С. Окончательно обработанная подшипниковая сталь имеет структуру мартенсита с включениями мелких карбидов и высокую твердость (HRC 60-64). Детали крупногабаритных роликовых подшипников диаметром 0,5-2 м (для прокатных станов, электрических генераторов) изготовляют из сталей 12ХНЗА, 12Х2Н4А, подвергая их цементации на большую глубину (3-6 мм). Для подшипников, работающих в агрессивных средах, применяют коррозионно-стойкую хромистую сталь 95Х18 (0,95% С, 18% Сг).

63вопрос Высокопрочные сталиЭто стали сВ более 1500 МПа, которое достигается при закалке и низком отпуске средне- и высокоуглеродистых комплекснолегированных сталей. Однако такое упрочнение влечет снижение пластичности и вязкости, и эти стали применяют при отсутствии динамических нагрузок. Высокопрочное состояние может быть получено несколькими способами:

1)легирование сталей с 0,4-0,5% С элементами как Cr, V, Mo, Si, W. Эти элементы тормозят разупрочняющие процессы при нагреве до 200-300оС. При этом получают мелкое зерно, снижается порог хладноломкости. Пример - 30ХГСНА, 40ХГСН3ВА и др. После ТО на нижний бейнит (зак+НО или изотермическая закалка) приобретают прочностьВ =1600-1800 МПа при =15-20%, KCU=0,40 МДж/м2. 2)применение ТМО. Так стали 30ХГСА, 40ХН и др после низкотемпературной ТМО имеютВ =2800 МПа. Механизм упрочнения - частичное выделение углерода из аустенита при деформации облегчает подвижность дислокаций в мартенсите, повышая пластичность. 3)мартенситостареющие стали - упрочнение достигается совмещением 2 механизмов упрочнения: мартенситного превращения и старения мартенсита. Мартенситное превращение протекает по второму механизму и образуется реечный мартенсит. Основной легирующий элемент - никель -17-25%, для более эффективного процесса старения мартенсита дополнительно легируют Ti, Al, Mo, Nb, Co.  Примеры - 03Н18К9М5Т. Достоинства сталей- высокая технологичность, высокие прочность и вязкость, достигаются специальной термообработкой: закалка при 800-860оС на воздухе и старение при 450-500оС, при котором перераспределяются легирующие элементы и выделяются интерметаллидные фазы NiTi, Ni3(Ti,Al) когерентно матричной фазе. Сталь имеет свойства прочностьВ =2000 МПа, =12%, KCU=0,50 МДж/м2, при -196оС прочность В = 2400 МПа, =10%, KCU=0,30 МДж/м2, сталь теплоустойчива при 450оС. 4)ПНП (ТРИП) (пластичность, наведенная превращением) стали - относятся к аустенитному классу (30Х9Н9М4Г2С2). После закалки с 1000-1100оС получают твердый раствор аустенита, который деформируют при 450-600оС. При деформации происходит наклеп аустенита, выделяется углерод из твердого раствора с образованием дисперсных карбидов (дисперсное упрочнение). Благодаря этому аустенит обедняется легирующими элементами.В результате сталь имеет высокую прочность - В =1800 МПа при пластичности 30%. Высокая пластичность обусловлена различием температурных уровней мартенситного превращения.

64вопрос Износостойкая стальМатериалы, устойчивые к изнашиванию в условиях больших давлений и ударных нагрузок. Трение с высокими давлениями и ударнымнагружением характерно для работы траков гусеничных машин, крестовин железнодорожных рельсов, ковшей экскаваторов и других деталей. Их изготовляют из высокомарганцовистой аустенитной стали 110Г13Л, называемой сталью Гадфильда, содержащей примерно 1% С и 13% Мn. Высокая износостойкость этой стали обусловлена способностью аустенита к сильному деформационному упрочнению (наклепу). Сталь плохо обрабатывается резанием, поэтому детали получают литьем (буква Л в марке стали) или ковкой Износостойкость стали 110Г13Л максимальна, когда она имеет однофазную структуру аустенита. Такую структуру обеспечивают закалкой в воде от 1000оC. После закалки сталь имеет низкую твердость (НВ 2000) и высокую вязкость. Если такая сталь во время работы испытывает только абразивное изнашивание, то оказывается не износостойкой. В условиях же ударного воздействия в поверхностном слое стали образуется большое количество дефектов кристаллического строения (дислокаций, дефектов упаковки). В результате твердость поверхности повышается до НВ 6000, и сталь становится износостойкой.

65 вопрос Стали для режущего инструмента Режущий инструмент работает в условиях длительного контакта и трения с обрабатываемым металлом. В процессе эксплуатации должны сохраняться неизменными конфигурации и свойства режущей кромки. Материал для изготовления режущего инструмента должен обладать высокой твердостью (НRС 60-62) и износостойкостью, т. е. способностью длительное время сохранять режущие свойства кромки в условиях трения.Чем больше твердость обрабатываемых материалов, толще стружка и выше скорость резания, тем больше энергия, затрачиваемая на процесс обработки резанием. Механическая энергия переходит в тепловую. Выделяющееся тепло нагревает резец, деталь, стружку и частично рассеивается. Поэтому основным требованием, предъявляемым к инструментальным материалам, является высокая теплостойкость, т.е. способность сохранять твердость и режущие свойства при длительном нагреве в процессе работы. По теплостойкости различают три группы инструментальных сталей для режущего инструмента: нетеплостойкие,  полутеплостойкие и теплостойкие.При нагреве нетеплостойких сталей до 200-300оС в процессе резания углерод выделяется из мартенсита закалки и начинается коагуляция карбидов цементитного типа. Это приводит к потере твердости и износостойкости режущего инструмента. К нетеплостойким относятся углеродистые и низколегированные стали. Полутеплостойкие стали, к которым относятся некоторые среднелегированные стали, например 9Х5ВФ, сохраняют твердость до температур 300-500оС. Теплостойкие стали сохраняют твердость и износостойкость при нагреве до температур 600оС.

66 вопрос Углеродистые инструментальные сталиУглеродистые инструментальные стали маркируются буквойУ, а следующая за ней цифра показывает содержание углерода в десятых долях процента. Для изготовления инструмента применяют углеродистые качественные стали марок У7-У13 и высококачественные стали марок У7А-У13А. Высококачественные стали содержат не более 0,02 % серы и фосфора, качественные - не более 0,03 %. По назначению различают углеродистые стали для работы при ударных нагрузках и для статически нагруженного инструмента. Стали марок У7-У9 применяют для изготовления инструмента при работе с ударными нагрузками, от которого требуется высокая режущая способность (зубила, клейма по металлу, деревообделочный инструмент, в частности пилы, топоры и т. д.).Стали марок У10-У13 идут на изготовление режущего инструмента, не испытывающего при работе толчков, ударов и обладающего высокой твердостью (напильники, шаберы, острый хирургический инструмент и т. п.). Из стали этих марок иногда изготавливают также простые штампы холодного деформирования. Углеродистые доэвтектоидные стали после горячей пластической обработки (ковки или прокатки) и последующего охлаждения на воздухе имеют структуру, состоящую из пластинчатого перлита и небольшого количества феррита, а заэвтектоидные стали - пластинчатого перлита и избыточного цементита, который обычно образует сплошную или прерывистую сетку по границам бывших зерен аустенита. Термическая обработка углеродистых инструментальных сталей состоит из двух операций: предварительной и окончательной обработок. Предварительная термическая обработка сталей заключается в отжиге при 740-760оС, цель которого - получить микроструктуру, состоящую из зернистого перлита - псевдоперлита, так как при такой микроструктуре после последующей закалки получаются наиболее однородные свойства. Кроме того, при такой структуре облегчается механическая обработка инструмента. Окончательная термическая обработка состоит из закалки и низкого отпуска. Закалку проводят в воде от 780-810оС, т. е. с температур, для доэвтектоидных сталей лежащих несколько выше Ас1, а для заэвтектоидных - лежащих ниже Асm. Углеродистые стали имеют очень высокую критическую скорость закалки - порядка 200-300оС. Поэтому недопустимо даже малейшее замедление охлаждения при закалке, так как это может привести к частичному распаду аустенита при температурах перлитного интервала и, как следствие, к появлению мягких пятен. Особенно быстро протекает распад аустенита в углеродистых сталях при температурах, близких к 500-550оС, где он начинается почти мгновенно, протекает чрезвычайно интенсивно и в течение нескольких секунд полностью заканчивается.Поэтому только инструменты малого диаметра могут после закалки в воде прокаливаться насквозь. Однако при этом в них возникают большие внутренние напряжения, которые могут вызвать существенные деформации. Инструменты, имеющие крупные размеры, при закалке в воде и в водных растворах солей, кислот и щелочей, охлаждающая способность которых выше, чем воды, закаливаются на мартенсит лишь в тонком поверхностном слое. Структура же глубинных зон инструментов представляет собой продукты распада аустенита в перлитном интервале температур. Сердцевина инструментов, имеющая такую структуру, является менее хрупкой по сравнению с мартенситной структурой. Поэтому инструменты, имеющие такую сердцевину, лучше переносят толчки и удары по сравнению с инструментами, закаленными насквозь на мартенсит.

Углеродистые стали наиболее целесообразно применять для инструментов небольшого сечения (до 5 мм), которые можно закаливать в масле и достигать при этом сквозной прокаливаемости, а также для инструментов диаметром или наименьшей толщиной 18-25 мм, в которых режущая часть приходится только на поверхностный слой, например напильники, зенкера, метчики. Углеродистые инструментальные стали отпускают при температурах не более 200оС во избежание снижения твердости. Твердость окончательно термически обработанного инструмента из углеродистых сталей обычно лежит в интервале НRС 56-64. Достоинствами углеродистых инструментальных сталей являются низкая стоимость, хорошая обрабатываемость давлением и резанием в отожженном состоянии. Их недостатками являются невысокие скорости резания, ограниченные размеры инструмента из-за низкой прокаливаемости и его значительные деформации после закалки в воде. Легированные инструментальные сталиНизколегированные стали для режущего инструмента также не обладают высокой теплостойкостью и обычно пригодны для работы при температурах не более 200-250оС. В отличие от углеродистых легированные стали обладают большей устойчивостью переохлажденного аустенита, следовательно большой прокаливаемостью и несколько более высокой износостойкостью. Их можно закаливать в масле до критического диаметра 40 мм и более. Низколегированная сталь 13Х имеет сравнительно неглубокую прокаливаемость и рекомендована для инструментов диаметром до 15 мм. Из этой стали изготавливают хирургический, гравировальный инструменты, лезвия безопасных бритв.Стали 9ХС, ХВГ, ХВСГ используют для изготовления инструментов крупного сечения: сверл, разверток, протяжек диаметром 60-80 мм. Обычная термическая обработка легированных режущих сталей состоит из закалки от 830-870оС в масле или ступенчатой закалки и отпуска при температуре 200оС. Твердость после термообработки составляет НRС 61-65. Если необходимо увеличить вязкость, то температуру отпуска повышают до 200-300 "С. Вследствие некоторого распада мартенсита твердость после этого снижается до НRС 55-60.

67вопрос Быстрорежущие стали Быстрорежущие стали маркируют буквой Р, цифры показывают среднее содержание вольфрама, являющегося основным легирующим элементом. Среднее содержание углерода и хрома во всех быстрорежущих сталях обычно составляет соответственно 1 и 4 %, поэтому эти элементы не указываются. Содержание остальных легирующих в целых процентах указывается в цифрах, следующих за их буквенным обозначением. Быстрорежущая сталь после закалки и отпуска имеет структуру высоколегированного отпущенного мартенсита с карбидами. Она сохраняет первоначальную структуру практически неизменной при нагреве до 600-620оС. Резцы из быстрорежущей стали позволяют увеличить скорость резания в 8-10 раз по сравнению с инструментом из углеродистых сталей У10-У10А. Известно, что потери твердости при нагреве обусловлена в первую очередь, коагуляцией выделившихся карбидов. Коагуляция карбидов в углеродистой и легированной сталях при температурах более 300оС ведет к быстрой потере твердости. Теплостойкость быстрорежущих сталей обусловлена легированием их карбидообразующими элементами вольфрамом, ванадием и молибденом в количествах, достаточных для связывания почти всего углерода в специальные карбиды. Они коагулируют при температурах более 600°С. При затвердевании литой быстрорежущей стали образуется эвтектика, напоминающая ледебурит и располагающаяся по границам зерен. После ковки или прокатки сетка эвтектики подвергается дроблению с измельчением входящих в нее карбидов и более равномерным их распределением в основной матрице. После прокатки или ковки быстрорежущую сталь подвергают изотермическому отжигу для уменьшения твердости и облегчения механической обработки. Сталь выдерживают при 740оС до полного превращения аустенита в перлито-сорбитную структуру. Высокую теплостойкость инструмент из быстрорежущих сталей приобретает после закалки и многократного отпуска. При нагреве под закалку необходимо обеспечить максимальное растворение карбидов и получение высоколегированного аустенита. Такая структура увеличивает прокаливаемость и позволяет получить после закалки мартенсит с высокой теплостойкостью.Во избежание трещин и деформации инструмента из-за низкой теплопроводности сталей применяют ступенчатый нагрев под закалку в расплавленных солях, а закалку производят в масле После закалки структура быстрорежущей стали состоит из высоколегированного мартенсита, содержащего 0,3-0,4% С, нерастворенных при нагреве избыточных карбидов и около 30% остаточного аустенита. Остаточный аустенит снижает твердость, режущие свойства стали, и его присутствие в структуре нежелательно. При многократном отпуске из остаточного аустенита выделяются дисперсные карбиды, легированность аустенита уменьшается и он претерпевает мартенситное превращение. Обычно применяют трехкратный отпуск при 550-570 "С в течение 45-60 мин.Число отпусков может быть сокращено при обработке холодом после закалки, в результате которой уменьшается содержание остаточного аустенита.

68вопрос Металлокерамические твердые сплавыМеталлокерамические твердые сплавы представляют инструментальные материалы, состоящие из карбидов тугоплавких металлов и цементирующего металла - кобальта, играющего роль связки. Твердые сплавы обладают наиболее высокой твердостью и сохраняют ее при нагреве до высоких температур. Твердые сплавы изготавливают методом порошковой металлургии. Применяют карбиды вольфрама, титана и тантала, а за рубежом - также карбиды ниобия и ванадия. Сплавы получают спеканием порошков карбидов с порошком кобальта, являющегося связующим компонентом, при 1400-1550оС после предварительного прессования. Твердые сплавы изготавливают в виде пластин, которые медным припоем припаивают к державке из обычной углеродистой стали. Твердые сплавы применяют для резцов, сверл, фрез и другого инструмента.Инструмент из металлокерамических твердых сплавов характеризуется высокой твердостью, износостойкостью в сочетании с высокой теплостойкостью (до 800-1000oС). Их недостатком является высокая хрупкость. Скорость резания твердыми сплавами в 5-10 раз выше, чем при применении быстрорежущих сталей.В зависимости от состава карбидной основы различают три группы твердых сплавов: вольфрамовые, титанвольфрамовые и титантанталвольфрамовые. Вольфрамовые твердые сплавы изготавливаются на основе карбида вольфрама и кобальта. Сплавы этой группы называют однокарбидными и обозначают буквами ВК и цифрой, показывающей содержание кобальта в процентах. Например, сплав ВКЗ содержит 3% кобальта и 97% карбида вольфрама.Чем больше содержание кобальта, тем выше прочность, хотя и несколько ниже твердость сплава. Твердые сплавы вольфрамовой группы имеют наибольшую прочность, но более низкую твердость, чем сплавы других групп. Они теплостойки до 800oС. Их обычно применяют для обработки чугуна, сплавов цветных металлов и различных неметаллических материалов, дающих прерывистую стружку. Сплавы второй группы (двухкарбидные) изготовляют на основе карбидов ТiС на кобальтовой связке. Их маркируют бук вами Т, К и цифрами. Цифры после буквы Т указывают содержание карбидов титана в процентах, а цифры после буквы К - содержание кобальта. Карбид вольфрама растворяется в карбиде титана при температуре спекания, образуя твердый раствор (Тi, W) С, имеющий более высокую твердость, чем WС. Сплавы этой группы имеют более высокую до 900-1000oС теплостойкость, повышающуюся с увеличением содержания карбидов титана. Их в основном применяют для высокоскоростной обработки сталей. Для изготовления сплавов третьей группы используют карбиды вольфрама, титана, тантала и порошок кобальта в качестве связки. Эти сплавы маркируют буквами ТТК и цифрами. Цифра, стоящая после букв ТТ указывает суммарное содержание карбидов титана ТiС и тантала ТаС, а цифра, стоящая после буквы К - содержание кобальта. Например, сплав ТТ7К12 содержит 4% ТiC, 3 % ТаС, 12 % Со и 81 WС. Сплавы этого типа имеют более высокую прочность, чем сплавы второй группы и лучшую сопротивляемость ударным воздействиям вибрации и выкрашиванию. Их применяют для более тяжелых условий резания (черновое точение стальных слитков, поковок, литья). Общим недостатком рассмотренных сплавов помимо высокой хрупкости, является повышенная дефицитность исходного вольфрамового сырья, являющегося основным компонентом, определяющим их повышенные физико-механические характеристики. Поэтому перспективным направлением является использование безвольфрамовых твердых сплавов.В качестве основы для которых используется карбид титана, а в качестве связки - никель и молибден. Они маркируются КТС и ТН. Твердость подобных твердых сплавов составляет НRА 87-94, сплавы имеют высокую износо- и коррозионную стойкость. Их используют для изготовления режущего инструмента и быстроизнашивающихся деталей технологического оборудования. Особо твердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из этих материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких статических давлений и высоких температур. Изделия из нитридов бора и кремния используют в качестве материала инденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур 700-1800°С, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, применяемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Они обладают высокой твердостью, прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышении температуры до 1000°С. Их преимуществом является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.

69вопрос Стали для измерительного инструментаСтали этого назначения должны обладать высокой твердостью и износостойкостью, сохранять постоянство формы и размеров в течение длительного срока эксплуатации. Кроме того, от них требуется хорошая обрабатываемость для получения высокого класса чистоты поверхности и малая деформация при термической обработке. Для измерительного инструмента обычно применяют высокоуглеродистые стали У8-У12 и низколегированные стали марок X, ХГС, ХВГ, 9ХС, содержащие около 1% С и до 1,5% Сr. Их твердость после термообработки должна быть не менее НRС 60-64. После обычной термической обработки в структуре высокоуглеродистых сталей обычно присутствует остаточный аустенит, из-за чего она не является стабильной. Для обеспечения высокой твердости стали и стабильности размеров инструмента в процессе эксплуатации проводится специальная термическая обработка. Она состоит из закалки в масле, для особо точных инструментов включает дополнительно обработку холодом при температуре -80oС и длительного (до 30 ч) низкотемпературного отпуска при 120-170oС. Нагрев при более высокой температуре недопустим из-за снижения твердости и износостойкости инструмента. Длительный отпуск предотвращает процессы старения и распад мартенсита в течение всего периода эксплуатации инструмента.

70вопрос Штамповые сталиШтамповые стали применяют для изготовления штампов холодного и горячего деформирования, пуансонов, матриц, фильер, пресс-форм для литья под давлением. В зависимости от температурных условий эксплуатации различают штамповые стали для деформирования в холодном и горячем состоянии. Стали для штампов холодного деформированияСтали этого типа должны обладать высокой твердостью и износостойкостью, высокой прочностью и удовлетворительной вязкостью для работы при ударных нагрузках.В зависимости от назначения различают три группы штамповых сталей для деформирования в холодном состоянии. К первой группе относятся стали для вытяжных и вырубных штампов. Основным требованием к этим сталям является высокая твердость и износостойкость. После неполной закалки их отпускают при 150-180°С на твердость НКС 60. На поверхности образуется твердый износостойкий слой за счет несквозной прокаливаемости - сравнительно вязкая сердцевина, позволяющая работать при умеренных ударных нагрузках.Вторую группу составляют стали для штампов холодного выдавливания, испытывающие большие удельные давления. Эти стали должны хорошо сопротивляться деформации и иметь высокую прочность. Присутствие в их структуре остаточного аустенита недопустимо. Для этого необходимо проведение высокого отпуска при температуре не менее 500oС. Поэтому, хотя эти стали и относятся к сталям для штампов холодного деформирования, они должны иметь довольно высокую теплостойкость.

К третьей группе относятся стали для высадочных и чеканочных штампов, работающих при, высоких ударных нагрузках. Сложность создания таких сталей состоит в том, что для повышения твердости необходимо увеличение содержания углерода, что может приводить к снижению ударной вязкости

71вопрос Стали для штампов горячего деформированияМатериал штампов соприкасается с горячим металлом и нагревается, причем нагрев чередуется с охлаждением. Эффективность использования таких прогрессивных методов точного формообразования, как горячая объемная штамповка, прессование и литье под давлением, зависит от стойкости инструмента. С расширением номенклатуры обрабатываемых сплавов, увеличением производительности и мощности оборудования формообразующий инструмент испытывает возрастающие нагрузки. Требования к материалу инструмента непрерывно растут. Материал для горячих штампов должен удовлетворять комплексу требований. К ним в первую очередь относятся высокая прочность (не менее 1000 МПа), необходимая для сохранения формы штампа при высоких удельных давлениях во время деформирования, и высокая теплостойкость, позволяющая сохранить высокие твердость и прочностные свойства при длительном температурном воздействии. В рабочих условиях штамп должен деформировать заготовку, а не наоборот - заготовка деформировать штамп. Стали должны иметь достаточную вязкость для предупреждения поломок при ударномнагружении. Они должны обладать высоким сопротивлением термической усталости (разгаростойкости), сохраняя способность выдерживать многократные нагревы и охлаждения без образования сетки трещин. Cтали должны иметь хорошую окалиностойкость и высокую прокаливаемость для обеспечения необходимых механических свойств по всему сечению, что особенно важно для массивных штампов.

72вопрос Технологический процесс изготовления изделий из порошков включает приготовление порошков,подготовку,формирование,спекание,горячее прессование и штамповку.Размеры частиц порошка обычно составляют до 0,1мм

73-75вопрос В зависимости от плотности и назначения порошковые материалы подразделяются на две группы: 1) плотные — материалы с минимальной пористостью, изготовленные на базе порошков железа, меди, никеля, титана, алюминия и их сплавов; 2) пористые, в которых после окончательной обработки сохраняется свыше 10–15 % пор.по объему. Первая группа материалов нашла широкое применение в машино- и приборостроении, автомобильной и авиационной технике и других отраслях оборонного и общегражданского производства. Высокая пористость материалов второй группы обеспечивает приобретение ими специальных свойств и позволяет применять их для изготовления специальных изделий (изделий антифрикционного назначения, фильтров, деталей охлаждения и т. п.). При производстве этой группы деталей применяются железографитовые материалы, бронзы, нержавеющие стали. Особое значение имеют инструментальные порошковые материалы. К их числу относятся порошковые быстрорежущие стали, карбидостали, твердые сплавы, материалы на основе сверхтвердых соединений (нитридов, боридов и т. д.) и алмазные материалы. 2. Конструкционные порошковые материалы на основе железа все материалы на основе железа делятся на: стали малоуглеродистые, углеродистые и медистые; стали никельмолибденовые, медьникелевые, медьникельмолибденовые; стали хромистые, марганцовистые, хромникельмарганцовистые; стали нержавеющие, предназначенные для деталей, применяемых в различных отраслях техники. Классификация порошковых сталей подчиняется тем же правилам, что и принятым для сталей традиционных методов получения. Однако в дополнение к обычным методам классификации — по равновесной структуре, по структуре, полученной при нагреве выше точки охлаждении на спокойном воздухе и т. п. — для порошковых сталей существует еще один способ классификации. В зависимости от объемного содержания пор порошковые стали подразделяются на непроницаемые (содержание пор менее 5–8 %), полупроницаемые (от 8 до 14 % пор) и проницаемые (пористость более 12–14 %).По технологии производства их можно подразделить на: однократно и многократно прессованные в условиях статических нагрузок в закрытых пресс-формах при обычных и высоких температурах; стали, полученные при совмещении холодного прессования и спекания высокопористых заготовок с последующим динамическим горячим прессованием или горячей штамповкой; полученные экструзией, прокаткой, взрывным прессованием и т. п. Конструкционные порошковые стали — это спеченные материалы, используемые для замены литых и кованых сталей при изготовлении деталей машин и приборов методами порошковой металлургии. Условное обозначение таких материалов состоит из букв и цифр, например: сталь порошковая конструкционная медноникелевая со средней массовой долей углерода 0,4 %, никеля 2 %, меди 2 % и минимальной плотностью 6400 кг/ будет иметь следующее обозначение: ПК40Н2Д2-64. Буквы в марке стали указывают: П — на принадлежность материала к порошковому, К — на назначение материала — конструкционный, остальные буквы и цифры — на содержание тех или иных легирующих элементов (Д — медь, Х — хром, Ф — фосфор, К — сера, М — молибден, Г — марганец, Т — титан, Н — никель). Основу материала — железо — в обозначении марок не указывают. Цифры, стоящие за буквами ПК, указывают на среднюю массовую долю углерода в сотых долях процента. Массовую долю углерода, равную 1 %, в обозначении марки материала не указывают. Цифры, стоящие за остальными буквами, означают содержание легирующих элементов в процентах; отсутствие цифры указывает на то, что массовая доля легирующего элемента не превышает одного процента. Условное обозначение конструкционного порошкового материала состоит из обозначения его марки — ПК40Н2Д2-64 и через дефис — его минимальной плотности — 6400 кг/м . Основой порошковых сталей служит железо, свойства которого при спекании оказывают большое влияние на формирование структуры и свойств стали. Наряду с порошковыми сталями порошковые изделия могут изготавливаться на основе одного железного порошка, а также железа, легированного другими элементами. Применение в качестве исходного материала чистого железного порошка при изготовлении конструкционных деталей ограничено из-за низких прочностных свойств спеченного железа. В основном оно применяется для изготовления ненагруженных деталей, различных уплотнительных изделий и т. п. Свойства таких изделий зависят от их плотности, величины и характера межчастичных границ, метода получения порошка, гранулометрического состава, удельной поверхности частиц, внутренней их рыхлости, технологии прессования (величины давления и скорости прессования), кратности прессования, температуры и времени спекания. Для получения практически беспористых изделий с повышенными механическими свойствами применяют горячее изостатическое прессование- экструзию, динамическое горячее прессование. В связи с низкой прочностью и твердостью спеченного железа, для повышения его механических свойств в железный порошок при приготовлении порошковой смеси вводят легирующие добавки (фосфор, медь, хром, никель, молибден), а спеченные изделия подвергают химико-термической обработке: азотированию, сульфидированию, хромированию. Медь в железные изделия вводят непосредственно в виде порошка или при изготовлении порошковой смеси в виде лигатуры. Введение меди в количестве 1,0–10 масс. % увеличивает предел текучести и временное сопротивление материала, но несколько снижает его пластичность и вязкость. Введение меди существенно повышает сопротивляемость порошкового материала атмосферной коррозии. Максимальная прочность на разрыв достигается при массовой доле меди 5–7 %. Медь снижает усадку материала при спекании. При введении 2–3 % меди спекание происходит практически без изменения размеров изделия, что позволяет избежать или существенно снизить объем его последующей механической обработки. Увеличение массовой доли меди свыше 3 % сопровождается ростом изделий при спекании, рост достигается при введении 8 % меди. Широкое применение нашли железоникелевые и железоникельмедные сплавы. Присадка к чистому железу 5 % никеля повышает прочность и твердость материала, оставляя его пластичность практически без изменений. При одновременном легировании никелем и медью (Ni — 4 % и Си — 2 %) прочность на разрыв образцов с пористостью 10 % достигает 400–420 МПа, удлинение —7–8 %, твердость — 120–127 НВ. Такие же образцы, легированные только 2 % меди, показывают следующие свойства при 10 % пористости: прочность на разрыв — 280–300 МПа, удлинение — 3–4 %, твердость — 100 НВ. Наиболее благоприятное сочетание прочности и пластичности наблюдается в сплавах содержащих от 1 до 5 % каждого из этих элементов. В связи со сравнительно низкой прочностью и твердостью спеченных железных изделий, основная масса порошковых материалов на базе железа дополнительно легируется углеродом, под действием которого спеченное железо приобретает способность закаливаться и во много раз повышать свою твердость и прочность. Углеродистые порошковые стали и стальные изделия могут быть получены непосредственным введением в железный порошок углерода в виде графита, сажи или чугунного порошка, а также путем науглероживания изделий в процессе спекания или цементации после спекания. Наиболее распространен метод введения в порошковую смесь графита. Однако из-за неравномерного распределения графита по объему смеси при смешивании стальные изделия в спеченном состоянии отличаются непостоянством свойств и структурных составляющих. Наиболее насыщенные углеродом микрообъемы аустенита располагаются вблизи графитовых включений, что способствует появлению в структуре спеченной стали свободного избыточного цементита и феррита. При спекании железографитовых изделий графит частично выгорает. Для уменьшения выгорания применяют графитосодержащие засыпки, углеродсодержашие среды. Кроме этого при приготовлении порошковой смеси в ее состав дополнительно вводят избыточное количество графита. Так, для получения стальных порошковых изделий с 0,4–0,45 % углерода при спекании в атмосфере конвертированного природного газа в смесь необходимо вводить до 0,85 % графита. При применении эндогаза с точно регулированным потенциалом по углероду содержание графита в смеси должно превышать заданное на 0,3–035 %. В связи с этим при приготовлении стальных изделий в порошковую смесь взамен графита зачастую вводят сажистое железо и порошок из чугунной стружки. Более высокая плотность сажистого железа и порошка чугунной стружки по сравнению с графитом позволяет получать более однородную смесь, что обеспечивает стабильность структуры и свойств изделия. К основным факторам, определяющим структуру и свойства порошковых углеродистых сталей, относятся температура, время и среда спекания. При содержании в смеси до 1,0–1,2 % графита оптимальная температура спекания составляет 1150–1200 °С, при содержании графита выше 1,2–1,5 % — 1050–1150 °С. Время спекания определяется масштабом садки и массой изделия. Медь в порошковые стали вводится в виде порошка чистой меди, омедненного графита, путем пропитки спеченных заготовок. При содержании в стали до 1 % меди она способствует усадке при спекании, при дальнейшем повышении ее концентрации наблюдается рост спеченного изделия. Повышение в порошковых сталях углерода уменьшает влияние меди на рост спеченного изделия, что достигается образованием в структуре сплава тройной железомедноуглеродистой фазы, которая расплавляясь при 1100 °С, вызывает усадку. Введение углерода в железомедные сплавы также резко повышает прочность порошковых изделий, причем максимальное возрастание свойств наблюдается при содержании меди до 5–6 % и углерода до 0,3–0,6 %. Большое влияние на свойства спеченных изделий из медистой стали имеет метод введения меди. Более высокие свойства достигаются при использовании омедненного графита.ведение никеля в порошковые стали приводит к повышению механических свойств материала, что связано как с повышением прочности феррита, так и благоприятным воздействием никеля на состояние межчастичных границ. Никель способствует «рассасыванию» межчастичных границ, увеличению протяженности металлического контакта, повышает усадку и плотность изделий. Никелевые порошковые конструкционные стали содержат обычно 0,3–0,6 % углерода и 1–3 % никеля. Увеличение содержания никеля понижает оптимальное содержание углерода. В связи с тем, что никель при спекании вызывает большую усадку, для получения безусадосньх изделий с высокими механическими свойствами порошковые стали легируют одновременно медью и никелем. Легирование порошковых сталей молибденом производится только при изготовлении ответственных тяжелонагруженных деталей. Введение хрома в порошковые стали положительно влияет на ее свойства. С железом хром образует α-γ-твердые растворы и интерметаллидные соединения, которые появляются в сплаве при содержании хрома свыше 30 %. Являясь сильным карбидообразующим элементом, хром образует в структуре стали сложные и двойные карбиды. Отличительной особенностью хрома является высокая устойчивость его оксидов, температура диссоциации которых почти достигает температуры плавления чистого хрома. Это осложняет процесс спекания, особенно когда хром вводится в смесь в виде чистого порошка хрома. Наличие оксидов затрудняет диффузионные процессы, а само спекание необходимо производить при высоких температурах в остроосушенных восстановительных средах (водороде, диссоциированном аммиаке). Поэтому структура спеченных хромсодержащих сталей отличается повышенной гетерогенностью и наличием фаз, которые по среднему составу материала не отвечают равновесной диаграмме его состояния. Ограниченное применение марганца в качестве легирующего элемента в порошковой металлургии связано с большой трудностью восстановления его оксидов, которые сохраняются в сплавах даже при спекании в вакууме и остроосушенных средах. Поэтому при изготовлении порошковых смесей марганец вводят в виде порошков ферросплавов-лигатур, а при спекании применяют остроосушенные среды и высокие температуры (1200–1280 °С). К числу основных характеристик, определяющих возможность перевода изготовления деталей с традиционных технологий на порошковые, относятся точность производства и механические свойства порошковых материалов. Точность изготовления порошковых деталей определяется в основном точностью прессового оборудования, стабильностью упругих последействий при холодном прессовании и объемных изменений при спекании, износом пресс-форм, ростом линейных размеров полуфабрикатов и изделий при хранении. Для повышения точности пористых конструкционных изделий применяют калибрование заготовки путем обжатия в калибровочных пресс-формах при припуске 0,5–1,0 %. Усилие калибрования составляет 10–25 % усилия холодного прессования. Упругое расширение после калибрования достигает 0,1 %. Точность линейных размеров изделий после горячей штамповки в основном определяется точностью пресс-инструмента.

74вопрос Порошковые антифрикционные материалы предназначены для производства изделий с низкими потерями на трение; их определяющий признак – сравнительно низкий коэффициент трения (обычно < 0,3, в том числе при наличии смазки < 0,1). Прирабатываемость, определяемая временем, необходимым для снижения коэффициента трения между подшипником и валом до его заданной величины, у порошковых антифрикционных материалов обычно хорошая. Их структура должна быть гетерогенной, мелкозернистой и отвечать правилу Шарли, т.е. представлять собой сочетание твердых и более мягких компонентов, причем одним из них, самым мягким, в таких антифрикционных материалах являются поры – составляющая с нулевой твердостью; к тому же поры могут быть заполнены смазкой. Именно метод порошковой металлургии наиболее эффективен для изготовления антифрикционных изделий различного химического состава с хорошей прирабатываемостью, высокой износостойкостью, низким и стабильным коэффициентом трения, хорошей сопротивляемостью схватыванию и другими полезными качествами. Наличие пор позволяет придавать антифрикционные свойства материалам, которые в литом состоянии ими не обладают (например, порошковое пористое железо или материалы на его основе успешно работают в различных узлах трения). Поры изменяют сам механизм прирабатываемости трущихся поверхностей. У порошковых материалов вследствие изменения и перераспределения объема пор происходит необратимая пластическая деформация в поверхностном и прилегающем к нему значительном по глубине (до нескольких миллиметров) приповерхностном слое, тогда как у литых материалов хорошая прирабатываемость обеспечивается только в поверхностном слое толщиной всего в несколько микрометров вследствие уменьшения шероховатости, в том числе и путем его износа.Хорошаяприрабатываемость порошкового пористого материала повышает качество поверхности, улучшая антифрикционные и эксплуатационные свойства изделий из него.Говоря о порошковых антифрикционных материалах и изделиях, обычно имеют в виду пористые подшипники, многослойные, металло-пластмассовые и металлостеклянные антифрикционные материалы. Они находят широкое применение в тракторо- и сельхозмашиностроении, автомобильной промышленности, тяжелом, энергетическом и транспортном машиностроении, в текстильной и пищевой промышленностях, в авиационной и бытовой технике, приборостроении и др. При обозначении марок порошковых антифрикционных материалов применяют буквы и цифры: Ж – железо, Гр – графит, Д – медь, Бр-бронза, О – олово, Н – никель, X – хром, М – молибден, К – сера и сульфидирование, Цс – сернистый цинк, Б – бор и борирование, Ц -цементирование, С – свинец, МГ – металлографит, Мс – дисульфид молибдена, Ф – фосфор, ФТ – фторопласт; цифры после букв указывают на содержание соответствующего элемента (например, ЖГр2 – 2% графита, остальное железо до 100 %).

75вопрос Производствофильтров из металлических порошков представляет собой специфическую область порошковой металлургии как по свойствам изделий, так и по технологии их изготовления, а также по особым требованиям, предъявляемым к исходным порошкам. Фильтрация играет важную роль в производственных процессах многих отраслей промышленности (химической, нефтяной, фармацевтической и др.), связанных с переработкой и очисткой от загрязнений жидкостей и газов, регулированием их давления и пр. Фильтры необходимы в медицине, при очистке воды, улавливании пыли, при очистке топлива, в измерительной технике и т.п. Развитие атомной энергетики и ракетной техники потребовало создания пористых материалов для тонкой очистки жидкометаллических и газообразных теплоносителей, пороховых газов, масел гидросистем высокого давления, для ионизации металлических паров в ионных ракетных двигателях и т.п. В промышленности применяют различные фильтрующие приспособления (гравийные и щелевые фильтры, циклоны, электрофильтры, фильтры из керамики и тканей и др.), которые достаточно сложны в изготовлении и в работе и не обеспечивают хорошей фильтрации. Порошковые фильтры отличаются от других большей проницаемостью при высокой степени очистки, прочностью, пластичностью, устойчивостью против тепловых ударов. Они могут работать при температурах от -273 до 700 -900 °С, а в отдельных случаях и до 2000 °С (при изготовлении из порошков тугоплавких соединений), быть коррозионностойкими и жаропрочными. Простота и экономичность изготовления, особенно тонкопористых фильтров с порами заранее заданного размера, выгодно отличают порошковые металлические фильтры от других. Технология фильтров из металлических порошков отличается высокойвоспроизводимостью таких свойств, как проницаемость и фильтрующая способность, определяемых размерами пор. Преимущество порошковых фильтров состоит также в простоте их регенерации после загрязнения, простоте и удобстве монтажа. Фильтры изготовляют из порошков преимущественно коррозионностойких материалов, главным образом бронзы (92 % Сu, 8 % Sn), нержавеющей стали, никеля, титана, серебра, латуни и др. Фильтры из металлических порошков обычно характеризуются общей и сквозной пористостью, проницаемостью по воздуху или жидкости, эффективным размером пор, тонкостью фильтрации и прочностью. Сквозная пористость определяет количество проходящей через фильтр жидкости или газа и, следовательно, скорость фильтрации. Эффективный размер пор определяет размеры улавливаемых фильтром частиц, т.е. тонкость фильтрации.

76вопрос Коррозия и ее социальное значение Любой коррозионный процесс приводит к изменениям в свойствах конструкционных материалов. Результатом процесса является «коррозионный эффект», ухудшающий функциональные характеристики металла оборудования, среды и технических систем, расценивающийся как «эффект повреждения» или «коррозионная порча».Очевидно, что экономические потери, связанные с коррозией металлов, определяются не столько стоимостью прокорродировавшего металла, сколько стоимостью ремонтных работ, убытками за счет временного прекращения функционирования инженерных систем, затратами на предотвращение аварий, в некоторых случаях абсолютно недопустимых с точки зрения экологической безопасности. Оценки затрат, связанных с коррозией (по данным зарубежных источников) приводят к выводу, что общие годовые расходы на борьбу с последствиями коррозии составляют 1,5-2% валового национального продукта. Часть этих затрат неизбежна; было бы нереально полностью исключить все коррозионные разрушения. Тем не менее, можно значительно сократить коррозионные потери за счет лучшего использования на практике накопленных знаний о коррозионных процессах и методов защиты от коррозии, которыми антикоррозионные службы располагают на данный момент. Процессы коррозииПонятие «коррозия металлов» включает большую группу химических процессов, приводящих к разрушению металла. Эти процессы резко отличаются друг от друга по внешним проявлениям, по условиям и средам в которых они протекают, а также по свойствам реагирующих металлов и образующихся продуктов реакции. Однако для их объединения имеются все основания, т.к. несмотря на резкие отличия, все эти процессы имеют не только общий результат – разрушение металла, но и единую химическую сущность – окисление металла. Причина коррозии – термодинамическая неустойчивость металлов, вследствие чего большинство из них встречаются в природе в окисленном состоянии (оксиды, сульфиды, силикаты, алюминаты, сульфаты и т.д.). Таким образом, коррозию можно определить как самопроизвольный процесс, протекающий при взаимодействии металла с окружающей средой, сопровождающийся уменьшением свободной энергии Гиббса и разрушением металла. Коррозия протекает на границе раздела двух фаз «металл – окружающая среда», т. е. является гетерогенным многостадийным процессом и состоит как минимум из трех основных многократно повторяющихся стадий: 1 подвода реагирующих веществ (в том числе коррозионного агента) к поверхности раздела фаз; 2 собственно реакции взаимодействия металла с коррозионной средой, итогом которой является переход некоторого количества металла в окисленную форму с образованием продуктов коррозии, а коррозионного агента в восстановленную форму; 3 отвод продуктов коррозии из реакционной зоны. Механизмы процессов коррозииПо механизму протекания процесса окисления металла различают химическую и электрохимическую коррозию. Химическая коррозия. К этому виду коррозии относятся такие процессы окисления металла и восстановления коррозионного агента, при которых передача электронов металла осуществляется непосредственно атомам или ионам окислителя (коррозионного агента), которым наиболее часто является кислород воздуха.

2Ме + О2 -->2МеО В практике теплоснабжения наиболее распространенным и практически важным видом химической коррозии является газовая коррозия – коррозия металлов в сухих газах (воздух, продукты сгорания топлива) при высоких температурах. Основными факторами, влияющими на скорость газовой коррозии, являются:природа металла (сплава);состав газовой среды;механические свойства образующихся продуктов коррозии (оксидных пленок);температура. Так, для железа, основного компонента углеродистых сталей, применяемых для изготовления экранов топочного пространства и конвективной части водогрейных котлов, зависимость скорости газовой коррозии от температуры близко к экспоненциальной.Температура оказывает влияние на состав образующихся на стали оксидных пленок и законы их роста. От состава оксидных пленок зависят их механические и, соответственно, защитные свойства, поскольку плотная сплошная оксидная пленка может защитить металл от дальнейшего окисления. Парциальное давление кислорода также оказывает влияние на скорость газовой коррозии. При окислении ряда металлов при постоянной и достаточно высокой температуре с повышением парциального давления кислорода скорость окисления сначала резко увеличивается, а затем, при достижении некоторого критического значения – резко уменьшается и в широком диапазоне давлений остается достаточно низкой. Большое влияние на скорость окисления металлов оказывает режим нагрева. Колебания температуры (переменный нагрев и охлаждение) даже в небольших интервалах вызывают разрушение оксидных пленок вследствие возникновения больших внутренних напряжений, в результате чего скорость окисления металла резко увеличивается.Для защиты от газовой коррозии применяют жаростойкое легирование сталей, создают защитные (восстановительные) атмосферы, используют термодиффузионные (на основе алюминия, кремния и хрома) и напыляемые (на основе оксидов алюминия, магния, циркония) защитные покрытия. Электрохимическая коррозия. Этот вид коррозии наиболее распространен и включает те случаи, когда процессы окисления металла и восстановления окислительного компонента протекают раздельно в среде жидкого электролита, т.е. в среде, проводящей электрический ток. Такими средами могут являться: природная вода, водные растворы солей, кислот, щелочей, а также воздух, почва и теплоизоляционные конструкции, содержащие электролит (влагу) в определенном количестве Возникновение гальванических элементов «катод – анод» на углеродистых сталях (основного конструкционного материала трубопроводов) при их контакте с электролитами происходит в основном из-за дифференциации поверхности сталей на участки с различными электродными потенциалами (теория локальных коррозионных элементов). Причины дифференциации могут быть различны:неоднородность структуры металла (в углеродистых сталях присутствуют фазы – феррит и цементит, структурные составляющие – перлит, цементит и феррит, имеющие различные электродные потенциалы);наличие на поверхности сталей оксидных пленок, загрязнений, неметаллических включений и т.п;неравномерное распределение окислителя на границе «металл-электролит», например, различные влажность и аэрация на различных участках поверхности металла;неравномерность распределения температуры;контакт разнородных металлов. Основные виды электрохимической коррозии и характер коррозионных повреждений металлаВ зависимости от условий протекания процесса электрохимической коррозии (вида коррозионной среды) различают атмосферную, почвенную, микробиологическую и жидкостную (кислотную, щелочную, солевую, морскую и пресноводную) коррозию. В зависимости от условий эксплуатации любой из вышеприведенных видов коррозии может протекать при наложении таких эксплуатационных факторов как трение,напряжения в металле, воздействие внешних источников постоянного и переменного тока. Методы защиты от электрохимической коррозииЗащита от электрохимической коррозии представляет комплекс мероприятий, направленных на предотвращение и ингибирование коррозионных процессов, сохранение и поддержание работоспособности оборудования и сооружений в требуемый период эксплуатации.Методы защиты металлоконструкций от коррозии основаны на целенаправленном воздействии, приводящем к полному или частичному снижению активности факторов, способствующих развитию коррозионных процессов. Методы защиты от коррозии можно условно разделить на методы воздействия на металл и методы воздействия на среду, а также комбинированные методы. Среди методов воздействия на металл, в практике защиты оборудования и трубопроводов теплоснабжающих организаций наибольшее распространение получили защитные и изолирующие покрытия постоянного действия (полимерные, стеклоэмалевые, металлические цинковые и алюминиевые). Воздействие на коррозионную среду (вода) применяется при защите от внутренней коррозии емкостного оборудования и трубопроводов путем ее ингибирования и деаэрации.В значительной степени снизить скорость коррозионных процессов на трубопроводах можно, применяя электрохимическую защиту. При данном виде защиты электрохимический потенциал трубопровода смещают в необходимую (защитную) область потенциалов (поляризация конструкции) путем его подключения к внешнему источнику тока – станции катодной защиты или протектору. Вид электрохимической коррозии 1. Атмосферная коррозия Наружные поверхности трубопроводов наземной и канальной прокладки (при уровне подтопления и заиливания канала, не достигающим изоляционных конструкций). Поверхности различных металлоконструкций и оборудования, не контактирующие с водой и грунтом. Внутренние напряжения в металле трубопровода и металлоконструкций, ударно-механическое воздействие капели с перекрытий.Характерные коррозионные повреждения: равномерная коррозия, в местах капели возможна коррозия пятнами. 2. Подземная коррозияНаружные поверхности трубопроводов бесканальной прокладки (при нарушении целостности изоляции), канальной прокладки (периодическое подтопление и заиливание канала, сопровождающееся увлажнением тепловой изоляции). Внутренние напряжения в металле, коррозия внешним постоянным и переменным током, воздействие капели.Характерные коррозионные повреждения: неравномерная коррозия, коррозия пятнами, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода. 3. Подводная коррозия Наружные поверхности трубопроводов канальной прокладки. (Постоянное подтопление канала при отсутствии тепловой изоляции на трубопроводе).Внутренние поверхности трубопроводов и оборудования химводоподготовки (деаэраторы, фильтры и т.п.)Внутренние напряжения в металле, коррозия внешним постоянным и переменным током. При неполном погружении трубопровода возможна коррозия по ватерлинии.Характерные коррозионные повреждения: неравномерная коррозия, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода, язвенные поражения в районе ватерлинии.На трубопроводах горячего водоснабжения возможно протекание процесса микробиологической коррозии железобактериями.Характерные коррозионные повреждения: язвенная коррозия (для внутренних поверхностей трубопроводов), точечная коррозия, неравномерная коррозия.

77вопрос Жаропрочные сплавы — металлические материалы, обладающие высоким сопротивлением пластической деформации и разрушению при действии высоких температур и окислительных сред Жаропрочные сплавы могут быть на алюминиевой, титановой, железной, медной, кобальтовой и никелевой основах. Наиболее широкое применение в авиационных двигателях получили никелевые жаропрочные сплавы, из которых изготавливают рабочие и сопловые лопатки, диски ротора турбины, детали камеры сгорания и т. п. В зависимости от технологии изготовления никелевые жаропрочные сплавы могут быть литейными, деформируемыми и порошковыми. Наиболее жаропрочными являются литейные сложнолегированные сплавы на никелевой основе, способные работать до температур 1050—1100 °C в течение сотен и тысяч часов при высоких статических и динамических нагрузках Жаростойкие стали и сплавы Способность стали или сплава сопротивляться окислению при высоких температурах называется жаростойкостью (окалиностойкостью). Жаростойкость характеризуется температурой начала интенсивного окалинообразования в воздушной среде. Жаростойкая сталь должна легироваться элементами, способствующими образованию на поверхности изделия при высоких температурах плотной и прочной пленки огнеупорных оксидов, препятствующей дальнейшему окислению. Основными легирующими элементами, повышающими жаростойкость сталей, являются хром, кремний и алюминий. Чем больше сталь содержит хрома, кремния и алюминия, тем выше ее жаростойкость и рабочая температура. Однако стали с высоким содержанием кремния и алюминия нетехнологичны, они трудно обрабатываются давлением. Поэтому алюминий и кремний добавляют в жаростойкую сталь в небольших количествах (А1-0,7-1,8%; Si - 1,2-3%). Наиболее часто в качестве жаростойких сталей применяются хромистые стали, но наилучший результат достигается одновременным легированием хромом, алюминием и кремнием. Стали, легированные кремнием и хромом, получили название силъхромы, а легированные кремнием, хромом и алюминием, сильхромали. Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; третьего периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C. Они химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности. Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 2,200 °C. Это необходимо для их определения как тугоплавких металлов. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список еще и элементы имеющие температуру плавления 1,850 °C — титан, ванадий, хром, цирконий, гафний, рутений и осмий.

78вопрос К сталям и сплавам с особыми физическими свойствами относятся те, работоспособность которых оценивается не только по механическим, но и по ряду других (теплофизических, магнитных, электрических и др.) свойств требуемого уровня. Магнитные стали и сплавы классифицируют на магнитно-твердые, магнитно-мягкие и парамагнитные.Магнитно-твердые стали и сплавы по своим потребительским свойствам характеризуются высокими коэрцитивной силой и остаточной индукцией и соответственно высокой магнитной энергией. По химическому составу промышленные магнитно-твердые стали и сплавы в порядке возрастания их коэрцитивной силы и магнитной энергии представляют собой:высокоуглеродистые стали (1,2... 1,4% С);высокоуглеродистые (1%С) сплавы железа с хромом (до 2,8%), легированные кобальтом;                       высокоуглеродистые сплавы железа, алюминия, никеля и кобальта, называемые алнико. Обозначают магнитно-твердые стали индексом "Е", указывая далее буквой с цифрой наличие хрома и его содержание в целых процентах (например, ЕХ2, ЕХЗ). Магнитно-твердые стали и сплавы используются для изготовления различного рода постоянных магнитов. В промышленности наиболее широко применяют сплавы типаалнико(ЮНДК15, ЮН14ДК25А, ЮНДК31ТЗБА и др.). Эти сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем. После литья проводят только шлифование.Магнитно-мягкие стали и сплавы отличаются легкой намагничиваемостью в относительно слабых магнитных полях. Их основными потребительскими свойствами являются высокая магнитная проницаемость, низкая коэрцитивная сила, малые потери на вихревые токи и при перемагничивании. Эти свойства обеспечивает гомогенная (чистый металл или твердый раствор) структура, чистая от примесей. Магнитно-мягкие материалы должны быть полностью рекристаллизованы для устранения внутренних напряжений, так как даже слабый наклеп существенно снижает магнитную проницаемость и повышает коэрцитивную силу. Магнитная проницаемость возрастает при микроструктуре из более крупных зерен.По   химическому   составу   промышленно   применяемые   магнитно-мягкие (электротехнические) стали и сплавы делятся на:низкоуглеродистые (0,05...0,005%С) с содержанием кремния 0,8...4,8%;сплавы железа с никелем. Для электротехнических сталей принята маркировка, основаная на кодировании. В обозначении марки используют четыре цифры, причем, их значения соответствуют кодам, содержащим следующую информацию:первый - структура материала (по наличию и степени текстуры) и вид прокатки (горячая или холодная деформация);второй - химический состав по содержанию кремния;третий - величины потерь тепловых и на гистерезис; четвертый - значение нормируемого потребительского свойства. Электротехнические стали изготавливают в виде рулонов, листов и резаной ленты. Они предназначены для изготовления магнитопроводов постоянного и переменного тока, якорей и полюсов электротехнических машин, роторов, статоров, магнитных цепей трансформаторов и др. Парамагнитными сталями являются аустенитные стали 12Х18Н10Т, 17Х18Н9, 55Г9Н9ХЗ, 40Г14Н9Ф2 и др. Основными потребительскими свойствами являются немагнитность и высокая прочность. Необходимая прочность достигается при деформационном и дисперсионном упрочнении изделий. К недостаткам этих сталей и сплавов следует отнести низкий предел текучести (150...350 МПа), что ограничивает область применения только малонагруженньгми конструкциями. Сплавы с заданным температурным коэффициентом линейного расширенияШироко применяются в машиностроении и приборостроении.  Наиболее распространены сплавы Fe-Ni, у которых коэффициент линейного расширения a при температурах -100 до 100°С с увеличением содержания никеля до 36% резко уменьшается, а при более высоком содержании никеля вновь возрастает. При температуре 600-700°С такого явления не наблюдается и коэффициент линейного расширения в зависимости от состава изменяется плавно, что объясняется переходом сплавов  в парамагнитное состояние. Таким образом, низкое значение температурного коэффициента линейного расширения связано с влиянием ферромагнитных эффектов.Для изготовления деталей, спаиваемых со стеклом, применяют более дешевые ферритные железохромистые сплавы 18ХТФ и 18ХМТФ. Сплавы с эффектом “памяти формы” Эффект памяти формы — явление возврата к первоначальной форме при нагреве, наблюдающееся у некоторых материалов после предварительной деформации.Есть металлическая проволока.Эту проволоку изгибают. Начинаем нагревать проволоку. При нагреве проволока распрямляется, восстанавливая свою исходную форму. Эффект памяти формы характеризуется двумя величинами.Маркой сплава со строго выдержанным химическим составом. Температурамимартенситных превращений. В процессе проявления эффекта памяти формы участвуют мартенситные превращения двух видов — прямое и обратное. Температуры мартенситных превращений являются функцией как марки сплава (системы сплава), так и его химического состава. Небольшие изменения химического состава сплава (намеренные или как результатбрака) ведут к сдвигу этих температур.Отсюда следует необходимость строгой выдержки химического состава сплава для однозначного функционального проявления эффекта памяти формы, что переводит металлургическое производство в сферу высоких технологий.Эффектпамяти формы проявляется несколько миллионов циклов; его можно усиливать предварительными термообработками. Возможны реверсивные эффекты памяти формы, когда материал при одной температуре «вспоминает» одну форму, а при другой температуре — другую.

79вопрос Титан и сплавы на его основе            Титан имеет две полиморфные модификации: низкотемпературную модификацию -Ti, устойчивую до 882°С, (ГП - решетка а = 0,296 нм, с = 0,472 нм) высокотемпературную-Ti, устойчивую выше 882оС (ОЦК решеткаа= 0,332 нм). На механические свойства титана значительно влияют примеси кислорода, водорода, углерода и азота, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, гидриды, карбиды и нитриды, повышая его характеристики прочности при одновременном снижении пластичности. Поэтому содержание этих примесей в титане ограничено сотыми и даже тысячными долями процента. Опасность водородной хрупкости, особенно в напряженных сварных конструкциях ограничивает содержание водорода. В техническом титане оно находится в пределах 0,008 - 0,012%. Титан обладает высокой прочностью и удельной прочностью и в условиях глубокого холода, сохраняя при этом достаточную пластичность. Сплавы на основе титанаДля получения сплавов титан легируют Al, Mo, V, Mn,Cr,Sn,Fe, Zr,Nb. Титан легируют для улучшения механических свойств, реже — для повышения коррозионной стойкости. Удельная прочность(в/) титановых сплавов выше, чем легированных сталей. Почти все промышленные титановые сплавы содержат алюминий. Классификация титана и его сплавов Технический титан и его сплавы получают из титановой губки. Титановая губка — это пористое серое вещество с насыпной массой 1,5—2,0 г/см3 и очень высокой вязкостью. В зависимости от содержания примесей технический титан подразделяют на несколько сортов: ВТ1-00 (99,53% Ti), ВТ1-0 (99,48 % Ti) и ВТ1-1 (99,44 % Ti). Принятая в настоящее время классификация титановых сплавов основана на структуре, которая формируется при отжиге по промышленным режимам. Она включает:1. -сплавы, структура которых представлена -фазой. 2. Псевдо- -сплавы, структура которых представлена  - фазой и небольшим количеством -фазы (не более 5%).3. ( + ) -сплавы, структура которых представлена  - и -фазами; сплавы этого типа также могут содержать интерметаллиды. 4.      Псевдо- -сплавы со структурой в отожженном состоянии, представленной -фазой и большим количеством  -фазы; в этих сплавах закалкой или нормализацией из  -области можно легко получить однофазную  -структуру. 5.      -сплавы, структура которых представлена термически стабильной -фазой. 6.      Сплавы на основе интерметаллидов. Общая характеристика титановых сплавовПрактически все титановые сплавы, за редким исключением, легируют алюминием, который имеет следующие преимущества перед остальными легирующими компонентами: а) широко доступен и сравнительно дешев; б) плотность алюминия значительно меньше плотности титана, поэтому введение алюминия повышает удельную прочность сплавов; в) алюминий эффективно упрочняет -, ( + )- и  - сплавы при сохранении удовлетворительной пластичности; г) с увеличением содержания алюминия повышается жаропрочность сплавов; д) алюминий повышает модули упругости; е) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Однако с увеличением содержания алюминия повышается чувствительность титановых сплавов к солевой коррозии, а также уменьшается их технологическая пластичность. Поэтому если есть опасность контакта сплавов с поваренной солью при работе в интервале температур 250—550°С или необходима высокая технологическая пластичность, содержание алюминия в титановых сплавах следует ограничивать.Некоторые сплавы титана обладают способностью запоминать, а затем восстанавливать ту форму, которая была придана металлическому изделию на определенном этапе обработки.

80вопрос При маркировке алюминиевых сплавов в начале указывается тип сплава (Д-сплавы типа дюралюминов,А-технический алюминий,АК-ковкие алюминиевые сплавы,В-высокопрочные сплавы,АЛ-литейные сплавы),затем указывается номер сплава

Подразделение:деформируемые сплавы,не упрочняемые то и упрочняемые то,литейные сплавы Прежде всего алюминий и его сплавы используют авиационная и автомобильная отрасли промышленности. Широко применяется алюминий и в других отраслях промышленности: в машиностроении, электротехнической промышленности и приборостроении, промышленном и гражданском строительстве, химической промышленности, производстве предметов народного потребления. Технический алюминий и его сварные соединения обладают высокой коррозионной стойкостью к межкристаллитной, расслаивающей коррозии и не склонны к коррозионному растрескиванию.

82вопрос Свойства деформируемых алюминиевых сплавов.По физико-химическим и технологическим свойствам все деформируемые алюминиевые сплавы можно разделить на следующие группы: 1) Малолегированные и термически не упрочненные сплавы; 2) Сплавы, разработанные на базе систем: Al-Mg-Si, : Al-Mg-Si-Cu-Mn (АВ, АК6, АК8); 3) Сплавы типа дуралюмин (Д1, Д6, Д16 и др); 4) Сплавы, разработанные на базе системы: Al-Mg-Ni-Cu-Fe (АК2, АК4, АК4-1); 5) Сплавы типа В95, обладающие наибольшей прочностью при комнатной температуре. Малолегированные и термически не упрочненные сплавы.Эти сплавы отличаются наиболее высокой коррозионной стойкостью и пластичностью. Упрочнение этих сплавов достигается нагартовкой. Они нашли наиболее широкое применение в виде листового материала, используемого для изготовления сложных по конфигурации изделий, получаемых путем горячей штамповки, глубокой вытяжке и прокатки. Из этих же сплавов путем прессования изготовляются трубы. Сплавы типа дуралюмин обладают более высокой прочностью. Большинство сплавов типа дуралюмин применяется в закаленном и естественно состаренном состоянии. Все эти сплавы имеют наибольшее распространение для изготовления труб, прутков, профилей и листов. По своей природе сплавы Д3П и Д18П также относятся к числу сплавов типа дуралюмин, но они менее легированы и отличаются весьма высокой пластичностью. Сплавы, разработанные на базе системы: Al-Mg-Ni-Cu-Fe.К этой группе относятся прежде всего сплавы АК3, АК4, АК4-1. Эти сплавы нашли наиболее широкое применение для ковки штамповки поршней, картеров и др. деталей, работающих при повышенных температурах. Из сплавов АК4, АК4-1 изготавливают детали колес компрессоров, воздухозаборников, крыльчатки мощных вентиляторов, лопасти и другие детали, работающие при повышенных температурах. Сплавы типа В95, обладающие наибольшей прочностью при комнатной температуре. Из всех деформируемых сплавов наибольшую плотность имеют сплавы В95, хотя этим сплавам присущи следующие недостатки: пониженная пластичность; повышенная чувствительность к коррозии под напряжением; большая чувствительность к повторным нагрузкам и действию острых надрезов, чем у сплава типа дуралюмин; склонность к резкому снижению прочностных характеристик с повышением температуры выше 1400С. Сплав В95 применяется в виде прессованных профилей, прутков, различных штамповок. Все эти полуфабрикаты поставляются как в отожженном, так и в закаленном и искусственно состаренном состояниях. Сплавы типа В95 путем термической обработки получают упрочнение в большей мере, чем другие алюминиевые сплавы. Время выдержки как при температуре закалки, так и при искусственном старении может резко изменяться в зависимости от толщины и структуры сплава.Эти сплавы после закалки получают значительное упрочнение, но еще сохраняют достаточно высокую пластичность, благодаря чему поддаются хорошей деформации. Для указания состояния деформированных полуфабрикатов, изготавливаемых из алюминиевых сплавов, используется буквенно-цифровая система обозначений после марки сплава. Без обозначения значит без термической обработки.         М - мягкий отожженный;         Н - нагартованный;       Н3 - нагартованный на три четверти;       Н2 - нагартованный на одну вторую;    Н1 - нагартованный на одну четверть; Т - закаленный и естественно состаренный;         Т1 - закаленный и искусственно состаренный на максимальную прочность; Т2, Т3 - режимы искусственного старения, обеспечивающие перестаривание материала (режимы смягчающего искусственного старения);         Т5 - закалка полуфабрикатов с температуры окончания горячей обработки давлением и последующее искусственное старение на максимальную прочность;         T7 - закалка, усиленная правка растяжением (1,5-3 %) и искусственное старение на максимальную прочность.

84вопрос Композицио́нныйматериа́л  — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с четкой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу и включенные в нее армирующие элементы. В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жесткость и т.д.), а матрица (или связующее) обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды. Преимущества композиционных материаловГлавное преимущество КМ в том, что материал и конструкция создается одновременно: высокаяудельная прочность (прочность 3500 МПа),высокая жёсткость (модуль упругости 130…140 - 240 ГПа),высокая износостойкость,высокая усталостная прочность,из КМ возможно изготовить размеростабильные конструкции,легкость Недостатки композиционных материаловБольшинство классов композитов (но не все) обладают недостатками:высокаястоимость,анизотропиясвойств,повышеннаянаукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны Области примененияТовары широкого потребленияПримеры: Железобетон — один из старейших и простейших композиционных материалов Удилища для рыбной ловли из стеклопластика и углепластика Лодки из стеклопластика Автомобильные покрышки Металлокомпозиты Спортивное оборудование, оборудование для горнолыжного спорта - палки и лыжи

85вопрос в дисперсно-упрочненных материалах, матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят в ней движение дислокации, то есть являющиеся ее упрочняющей фазой. Высокая прочность достигается при размере частиц 10…500 нм при среднем расстоянии между частицами 100…500 нм и равномерном их распределении в матрице. Оптимальное содержание 2 фазы для различных материалов неодинаково, но обычно не превышает 5…10 % .Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, индия) сложные соединения оксидов), не растворяющихся в матричном металле, позволяет сохранить высокую прочность материала. Поэтому такие материалы применяют как жаропрочные. Дисперсно-упрочненные композиты могут быть получены на основе большинства применяемых в технике металлов и сплавов.Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т.д.) и двигателей (лопаток компрессора и турбины и т.д.); в космической технике для узлов силовых конструкций аппаратоов, подвергающисхя нагреву, для элементов жесткости, панелей; в авто - для облегчения кузовов, рессор, рам, бамперов и т.д.; в горнодобывающей промышленности ― буровой инструмент, детали комбайнов и т.д.; в строительстве ─ пролеты мостов, элементы сборных конструкций высотных сооружений и так далее.

86 вопрос Изобретения относятся к производству металлических композиционных материалов, которые могут быть использованы в аэрокосмической и автомобильной промышленности, благодаря их высокой прочности, ударной вязкости, малому удельному весу и возможности продолжительного срока службы. Предложен способ изготовления металлического композиционного материала на основе алюминиевого сплава, армированного керамикой, включающий объединение расплава алюминиевого сплава с расплавом флюса в инертной атмосфере, отличающийся тем, что керамическую фазу предварительно смешивают с флюсом для снижения парциального давления кислорода и проводят плавление смеси в инертной атмосфере совместно со сплавом на основе алюминия для диспергирования в нем керамической фазы. Керамическая фаза предложенного материала содержит, например, диборид титана. Флюс для формирования предложенного металлического композиционного материала в качестве основы содержит литий или магний. 

88вопрос Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.Медь обладает высокой тепло- и электропроводностью. Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие. ПрименениеВ электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02 % алюминия снизит ее электрическую проводимость почти на 10 %. Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.Для производства труб

89вопрос Латунь — это двойной или многокомпонентный сплав на основе меди, где основным легирующим элементом является цинк иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов. Температура плавления латуни в зависимости от состава достигает 880—950° С. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается и прокатывается. Хотя поверхность Л., если не покрыта лаком, чернеет на воздухе, но в массе она более сопротивляется действию атмосферы, чем медь. Имеет желтый цвет и отлично полируется. Висмут и свинец имеют вредное влияние на латунь, так как уменьшают способность к деформации в горячем состоянии. Порядок маркировкиПринята следующая маркировка. Сплав латуни обозначают буквой «Л», после чего следует буквы основных элементов, образующих сплав. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70 % Cu. В случае легированных деформируемых латуней указывают ещё буквы и цифры, обозначающие название и количество легирующего элемента, ЛАЖ60-1-1 означает латунь с 60 % Cu, легированную алюминием (А) в количестве 1 % и железом в количестве 1 %. Содержание Zn определяется по разности от 100 %. ПрименениеДверная задвижка из латуни

90вопрос Бронза  - это название сплава состоящего из меди и различных легирующих элементов, основной добавкой считается олово, что и определило название оловянистые бронзы. Высокие литейные свойства бронзы определяются исключительно малой усадкой, которую имеет бронза. Усадки оловянистой бронзы меньше чем у латуни и сталей. Текучесть бронзы в расплавленном состоянии небольшая, вследствие большой разницы температур между бронзами с различным содержанием олова. По этой же причине бронза не дает концентрированной усадочной раковины и для отливки бронз нет необходимости иметь большие прибыли. По этой же причине отливки из бронзы редко удается получить высокой плотности, рассеянные усадочные поры по всему объему отливки понижают ее герметичность.Влияние олова на механические свойства меди в сплаве бронзы,такое же, как и влияние цинка, но более резкое. Уже при содержании около пяти процентов олова пластичность бронзы начинает падать. Прочность бронзы начинает падать при содержании олова около двадцати процентов и сплав становится хрупким.В литой бронзе наличие включений твердого эвтектоида обеспечивает высокую стойкость против истирания, и поэтому бронза с содержанием олова на десять и более процентов является одним из наилучших антифрикционных материалов и широко применяется как подшипниковый сплав.Благодаря высокой химической стойкости бронзы из них делают трубопроводную арматуру. Таким образом основное применение бронзы это сложные отливки, вкладыши подшипников и трубопроводная арматура. Для удешевления в большинстве промышленных бронз добавляют от пяти до десяти процентов цинка. Цинк в этих количествах растворяется в меди и не влияет существенно на структуру сплава. Для лучшей обрабатываемости в бронзу вводят  от трех до пяти процентов свинца, который присутствует в виде обособленных включений, обеспечивающих ломкость стружки при ее обработке на металлорежущих станках. Фосфор вводится в бронзу как раскислитель и устраняет хрупкие включения окиси олова. При наличии около одного процента фосфора такую бронзу принято называть фосфористой. Фосфор при его содержании более 0,2 процента образует твердые включения, повышая антифрикционные свойства бронзы.Бронзу маркируют начальными буквами  Бр , затем следуют буквы, показывающие какие легирующие элементы содержаться в ней, а потом цифры показывающие количество процентов этих элементов в бронзе. Например, БрАЖ 9-4, БрОЦС 5-5-5, БрКМц 3-1, БрОФ 7-0,2, БрБ 2. Кроме всех перечисленных сплавов бронз существуют сплавы бронзы с добавлением алюминия, кремния, бериллием и другими элементами. Малой величиной усадки оловянистые бронзы превосходят другие бронзы, но другие бронзы превосходят оловянистую по другим параметрам.бронза с алюминием и кремнием лучше по механическим свойствам, алюминиевая превосходит по  химической стойкости, бронза с добавлением кремния и цинка имеет лучшую жидко текучесть. Бериллиевая бронза отличается от остальных высокой твердостью и упругостью. Свойства бронз содержащие от пяти до десяти процентов алюминия обладают ценными технологическими и механическими свойствами. Эти бронзы кристаллизуются в узком интервале температур, из за этого приобретают высокую жидкотекучесть и дают концентрированную усадочную раковину. Кроме простых бронз существуют бронзы с большим содержанием алюминия и добавления магния, железа и никеля.

91вопрос Баббитами-антифрикционные сплавы на основе олова или свинца. Баббиты обладают низкой твердостью (HB130 – 320МПа), имеют невысокую температуру плавления (240 – 320 °С), повышенную размягчаемость (НВ90 – 240 МПа при 100 °С), отлично прирабатываются и обладают высокими антифрикционными свойствами. В то же время они обладают низким сопротивлением усталости, что влияет на работоспособность подшипников.В качестве антифрикционных сплавов употребляют бронзы (словянные и безоловянные) и латуни. Подшипники изготавливают из бронзы в монометаллическом и биметаллическом исполнении. Для монометаллических подшипников используют оловянистыебронзыДля биметаллических подшипников в качестие антифрикционного слоя употребляются бронзы, содержащие повышенное количество свинца без олова (БрС30) или с 1% Sn.

92вопрос Припойметалл или сплав, применяемый при пайке для соединения заготовок и имеющий температуру плавления ниже, чем соединяемые металлы. Применяют сплавы на основе олова, свинца, кадмия, меди, никеля и др.Пайку осуществляют или с целью создания механически прочного (иногда герметичного) шва, или для получения электрического контакта с малым переходным сопротивлением. При пайке места соединения и припой нагревают. Так как припой имеет температуру плавления значительно ниже, чем соединяемый металл (или металлы), то он плавится, в то время как основной металл остаётся твёрдым. На границе соприкосновения расплавленного припоя и твёрдого металла происходят различные физико-химические процессы. Припой смачивает металл, растекается по нему и заполняет зазоры между соединяемыми деталями. При этом компоненты припоя диффундируют в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое. Выбирают припой с учётом физико-химических свойств соединяемых металлов, требуемой механической прочности спая, его коррозионной устойчивости и стоимости. При пайке токоведущих частей необходимо учитывать удельную проводимость припоя. Назначение припоев. ПОС 90 — для паяния внутренних швов пищевой посуды (кастрюли и т.п.). ПОС 40 — паяние латуни, железа и медных проводов. ПОС 30 — паяние латуни, меди, железа, цинковых и оцинкованных листов, белой жести, приборов, радиоаппаратуры, гибких шлангов и бандажной проволоки электромоторов. ПОС 18 — паяние свинца, железа, латуни, меди, оцинкованного железа, лужение дерева перед пайкой, заменитель припоя ПОС 40. ПОСС 4—6 — паяние белой жести, железа, меди, свинца при наличии клепаных замочных швов, заменитель припоя ПОС 30.

93, 94вопросы Полимеры— неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых «мономерными звеньями», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Вальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвленным, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п. Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения. Особенности полимеровОсобые механические свойства:эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок). Особенности растворов полимеров: высокая вязкость раствора при малой концентрации полимера;растворение полимера происходит через стадию набухания. Особые химические свойства: способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.). Классификация полимеровПо химическому составу все полимеры подразделяются наорганические, элементоорганические, неорганические. Органические полимеры. Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения. По форме макромолекул полимеры делят на линейные, разветвленные (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее. По отношению к нагреву полимеры подразделяют натермопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения. Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле Огнеупорные полимеры Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого, применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике. Учитывая высокие требования экологической безопасности, особое внимание уделяется галоген-несодержащим компонентам: соединениям фосфора и гидроксидам металлов.Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол. Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня. Процессы старения полимеровПри хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов — тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов. Деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в свойствах полимерного материала; теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, и т.д. Изменения свойств полимеров и изделий подобного рода называют старением.

95вопрос Пластма́ссы — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров. Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние. Типы пластмассВ зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) — отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств. Также газонаполненные пластмассы — вспененные пластические массы, обладающие малой плотностью. СвойстваПластмассы характеризуются малой плотностью, чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются.Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов идиизоцианатов при получении полиуретанов.Для придания особых свойств пластмассе в нее добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т. п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды) ПолучениеПроизводство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул

96вопрос Поликорбанат – термопластичный полимер на основе дифенилпропана. Один из наиболее хладостойких и ударопрочных термопластов. Может использоваться в качестве конструкционного материала, заменяющего металлы

97вопрос Реактопласты – слоистые пластмассы,содержащие листовые наполнители,уложенные слоями

98вопрос Резиновые технические изделия Резина - эластичный материал, образующийся в результате вулканизациинатурального и синтетических каучуков. Представляет собой сетчатый эластомер – продукт поперечного сшиваниямолекул каучуков химическими связями. По группам Общего назначения,специальногоназначения,теплостойкие,морозостойкие,маслобензостойкие,стойкие к действию химически агрессивных сред,в том числе стойкие к гидравлическим жидкостям,диэлектрические,электропроводящие,антистатические,магнитные,огнестойкие,радиационностойкие,вакуумные,износостойкие,медицинского назначения