Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_1 (1).docx
Скачиваний:
6
Добавлен:
02.08.2019
Размер:
138.04 Кб
Скачать
  1. Понятие о линейно поляризованной волне. Поляризация естественного света. Неполяризованное излучение. Дихроичные поляризаторы. Поляризатор и анализатор света. Закон Малюса.

Поляриза́ция волн — явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.[1]

линейная — колебания возмущения происходит в какой-то однойплоскости. В таком случае говорят о «плоско-поляризованной волне»;

круговая — конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой.

Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.

Дихроичный поляризатор содержит пленку, содержащую по крайней мере одно дихроичное органическое вещество, молекулы или фрагменты молекул которого имеют плоское строение. По крайней мере часть пленки имеет кристаллическую структуру. Дихроичное вещество имеет по крайней мере по одному максимуму спектральной кривой поглощения в спектральных диапазонах 400 - 700 нм и/или 200 - 400 нм и 0,7 - 13 мкм. При изготовлении поляризатора наносят на подложку пленку, содержащую дихроичное органическое вещество, накладывают на нее ориентирующее воздействие и сушат. При этом условия нанесения пленки и вид, и величину ориентирующего воздействия выбирают так, что параметр порядка пленки, соответствующий по крайней мере одному максимуму на спектральной кривой поглощения в спектральном диапазоне 0,7 - 13 мкм, имеет величину не менее 0,8. Кристаллическая структура по крайней мере части пленки представляет собой трехмерную кристаллическую решетку, образованную молекулами дихроичного органического вещества. Обеспечивается расширение спектрального диапазона работы поляризатора при одновременном улучшении его поляризационных характеристик.

Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла   между плоскостями поляризации падающего света и поляризатора.

где I0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, ka — коэффициент прозрачности поляризатора.

  1. Явление Брюстера. Формулы Френеля для коэффициента отражения для волн, электрический вектор которых лежит в плоскости падения, и для волн, электрический вектор которых перпендикулярен к плоскости падения. Зависимость коэффициентов отражения от угла падения. Степень поляризации отраженных волн.

Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называетсяуглом Брюстера. Закон Брюстера:  , где n21 — показатель преломления второй среды относительно первой, θBr — угол падения (угол Брюстера). С амплитудами падающей ( Uпад) и отраженной ( Uотр) волн в линии КБВ связано соотношением:

Kбв = (Uпад - Uотр) / (Uпад + Uотр)

Через коэффициент отражения по напряжению ( KU ) КБВ выражается следующим образом:

Kбв = (1 - KU) / (1 + KU)При чисто активном характере нагрузки КБВ равен:

Kбв = R / ρ при R < ρ или

Kбв = ρ / R при R ≥ ρ

где R — активное сопротивление нагрузки, ρ — волновое сопротивление линии

  1. Понятие об интерференции света. Сложение двух некогерентных и когерентных волн, линии поляризации которых совпадают. Зависимость интенсивности результирующей волны при сложении двух когерентных волн от разности их фаз. Понятие о геометрической и оптической разности хода волн. Общие условия для наблюдения максимумов и минимумов интерференции.

Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве.

Волны и возбуждающие их источники называются когерентными, если разность фаз волн   не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн   изменяется с течением времени. Формула для разности :

, где  ,

  1. Лабораторные методы наблюдения интерференции света: опыт Юнга, бипризма Френеля, зеркала Френеля. Расчет положения максимумов и минимумов интерференции.

Опыт юнга - В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрируетинтерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

Бипризма Френеля - в физике - двойная призма с очень малыми углами при вершинах.  Бипризма Френеля является оптическим устройством, позволяющим из одного источника света формировать две когерентные волны, которые дают возможность наблюдать на экране устойчивую интерференционную картину.  Бипризма Френкеля служит средством экспериментального доказательства волновой природы света. 

Зеркала Френеля  оптическое устройство, предложенное в 1816 О. Ж. Френелем для наблюдения явления интерференциикогерентных световых пучков. Устройство состоит из двух плоских зеркал I и II, образующих двугранный угол, отличающийся от 180° всего на несколько угловых мин (см. рис. 1 в ст. Интерференция света). При освещении зеркал от источника S отражённые от зеркал пучки лучей можно рассматривать как исходящие из когерентных источников S1 и S2, являющихся мнимыми изображениями S. В пространстве, где пучки перекрываются, возникает интерференция. Если источник S линеен (щель) и параллелен ребру Ф. з., то при освещении монохроматическим светом интерференционная картина в виде параллельных щели равностоящих тёмных и светлых полос наблюдается на экране М, который может быть установлен в любом месте в области перекрытия пучков. По расстоянию между полосами можно определить длину волны света. Опыты, проведённые с Ф. з., явились одним из решающих доказательств волновой природы света.

  1. Интерференция света в тонких пленках. Условия образования светлых и темных полос в отраженном и проходящем свете.

  2. Полосы равного наклона и полосы равной толщины. Интерференционные кольца Ньютона. Радиусы темных и светлых колец.

  3. Интерференция света в тонких пленках при нормальном падении света. Просветвление оптических приборов.

  4. Оптические интерферометры Майкельсона и Жамена. Определение показателя преломления вещества с помощью двулучевых интерферометров.

  5. Понятие о многолучевой интерференции света. Интерферометр Фабри-Перо. Сложение конечного числа волн одинаковых амплитуд, фазы которых образуют арифметическую прогрессию. Зависимость интенсивности результирующей волны от разности фаз интерферирующих волн. Условие образования главных максимумов и минимумов интерференции. Характер многолучевой интерференционной картины.

  6. Понятие о дифракции волн. Волновой параметр и границы применимости законов геометрической оптики. Принцип Гюйгенса-Френеля.

  7. Метод зон Френеля и доказательство прямолинейного распространения света.

  8. Дифракция Френеля на круглом отверстии. Радиусы зон Френеля при сферическом и плоском волновом фронте.

  9. Дифракция света на непрозрачном диске. Расчет площади зон Френеля.

  1. Проблема увеличения амплитуды волны при прохождении через круглое отверстие. Амплитудные и фазовые зонные пластинки. Фокусирующие и зонные пластинки. Фокусирующая линза как предельный случай ступенчатой фазовой зонной пластинки. Зонирование линз.

если в отверстии укладывается нечётное число зон Френеля, то в центре дифракционной картины наблюдается светлое пятно

в плоском зеркале можно оставить лишь отражающие нечётные зоны, удалив из него отражающие чётные зоны. Полученная таким образом пластинка называется амплитудной зонной пластинкой, работающей на отражение

между вторичными волнами, отражёнными от соседних чётных и нечётных зон имеется разность фаз ϕ = π , или геометрическая разность хода ∆ = λ/2. Поэтому вместо того, чтобы исключать действие чётных зон, для увеличения амплитуды отражённой волны необходимо фазывторичных волн от чётных зон изменить на π по сравнению с фазами волн, отражённых от нечётных зон. Дру-гими словами, необходимо компенсировать разность хода ∆ = λ/2 вторичных волн от соседних зон. Полученная таким образом пластинка называется фазовой зонной пластинкой, работающей на отражение, или пластинкой с обращением фаз. Следовательно, фазовая зонная пластинка будет обеспечивать в точке приёма результирующую волну с амплитудой:

Ep3= E1+ E2+ E3+ E4+ E5+ E6.

фокусирующий прибор является предельным случаем ступенчатой фазовой зонной пластинк

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]