Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фонетика ответы Спектр.docx
Скачиваний:
24
Добавлен:
30.07.2019
Размер:
97.79 Кб
Скачать
  1. Спектр. Математические основы спектрального разложения

Спектр (лат. spectrum от лат. specter — виде́ние, призрак) в физике — распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр — спектр частот (или, что то же самое, энергий квантов) электромагнитного излучения.

Спектральный анализ - один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области. Важную роль в спектральном анализе играют методы статистики, поскольку сигналы, как правило, имеют случайный характер или зашумлены при распространении или измерении. Если бы основные статистические характеристики сигнала были точно известны, или их можно было определить по конечному интервалу этого сигнала, то спектральный анализ представлял бы собой отрасль "точной науки". Однако, в действительности по отрезку сигнала можно получить только оценку его спектра. Поэтому практика спектрального анализа - некое ремесло (или искусство?) достаточно субъективного характера. Различие между спектральными оценками, получаемыми в результате обработки одного и того же отрезка сигнала разными методами, можно объяснить различием допущений, принятых относительно данных, различными способами усреднения и т .п. Если априори характеристики сигнала не известны, нельзя сказать какие из оценок лучше.

Быстрое преобразование Фурье

Быстрое преобразование Фурье (БПФ) - это не еще одна разновидность преобразования Фурье, а название целого ряда эффективных алгоритмов, предназначенных для быстрого вычисления дискретно-временного ряда Фурье. Основная проблема, возникающая при практической реализации ДВРФ, заключена в большом количестве вычислительных операций, пропорциональном N2. Хотя еще задолго до появления компьютеров было предложено несколько эффективных вычислительных схем, позволяющих существенно сократить число вычислительных операций, настоящую революцию произвела публикация в 1965 году статьи Кули (Cooly) и Тьюки (Tukey) c практическим алгоритмом быстрого (число операций Nlog2N) вычисления ДВРФ. После этого было разработано множество вариантов, усовершенствований и дополнений основной идеи, составивших класс алгоритмов, известных под названием быстрого преобразования Фурье. Основная идея БПФ - деление N-точечного ДВРФ на два и более ДВРФ меньшей длины, каждый из которых можно вычислить отдельно, а затем линейно просуммировать с остальными, с тем чтобы получить ДВРФ исходной N-точечной последовательности.

  1. Спектрограмма. Узкополосная и широкополосная спектрограмма

Спектрограмма — изображение, показывающее зависимость спектральной плотности мощности сигнала от времени. Спектрограммы применяются для идентификации речи, анализа звуков животных, в различных областях музыки, радио- и гидролокации, обработке речи, сейсмологии и в других областях.

В практике анализа речевых сигналов применяется два вида спектрограмм: широкополосные и узкополосные (рисунки 7а, 7б). В узкополосных спектрограммах используется частота развертки 45 Гц, это ниже, чем самые низкие фонационные частоты в голосе, что позволяет при такой точной развертке отчетливо увидеть вдоль вертикальной оси гармоники голосового источника.

Как было сказано в предыдущих статьях, речевой сигнал – это результат "свертки" (умножения) звукового сигнала, создаваемого голосовым источником, например, за счет модуляции воздуха при колебаниях голосовых связок, и огибающей, за счет резонансных свойств голосового тракта (этим и определяется его формантная структура.

На широкополосных спектрограммах, обычно с частотой развертывания 300 Гц, отчетливо видны вертикальные полосы вдоль оси времени, связанные с появлением отдельных импульсов воздушного давления при колебаниях голосовых связок, и сильно подчеркнуты темные горизонтальные полосы, соответствующие формантам. Поэтому, в зависимости от целей, которые ставятся при анализе речевого сигнала, используются или широкополосные спектрограммы (выделяются отдельные импульсы воздуха, подчеркнуты форманты), или узкополосные, где выделяются обертоны голосового источника. При этом можно проследить изменение основной частоты фонации во времени, что имеет большое значение при оценке мелодического рисунка речи, как было отмечено выше. Кроме того, полученные значения спектров позволяют оценить распределение энергии во времени.

Однако, ни широкополосная, ни узкополосная спектрограммы не учитывают специфику спектрального анализа сигнала, который производится во внутреннем отделе периферической слуховой системы на базилярной мембране. Поэтому в последние годы с учетом новейших результатов в психоакустике была разработана методика построения "слуховых" спектрограмм. При построении этих спектрограмм используются фильтры с различными полосами пропускания, ширина которых соответствует ширине "критических полос" слуха (или ширине слуховых фильтров при спектральном анализе звуков на базилярной мембране).