Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kniga_Kolcherinoy.docx
Скачиваний:
61
Добавлен:
01.05.2019
Размер:
1.7 Mб
Скачать

1.2.2. Метод незатухающих колебаний

Этот метод позволяет определить настройки регулятора, обеспечивающие определенный запас устойчивости АСР и удовлетворительное качество переходных процессов. Определение настроек регулятора производиться в два этапа:

определяется критическая частота и критическая настройка Кркр пропорционального регулятора, при которой в замкнутой АСР возникают затухающие колебания у(t);

определение по Кркр настроек регуляторов по приближенным формулам.

Определение критической частоты и настройки Кркр

Если разомкнутая система устойчивая и ее АФХ проходит через точку , то замкнутая АСР будет находиться на границе устойчивости.

Условие нахождения АСР на границе устойчивости:

тогда получим:

это условие выполняется, если:

Амплитудно-фазовая характеристика пропорционального регулятора имеет вид:

или в показательной форме:

для расчета настройки Кркр и частоты получим два уравнения:

Из второго уравнения находим значение , затем из первого Кркр по формуле:

Определение настроек регуляторов

По критическим значениям Кркр и определяем настройки регуляторов

Пропорциональный (П) регулятор:

Пропорционально-дифференциальный (ПД) регулятор:

или

где, - период незатухающих колебаний АСР

Пропорционально-интегрально-дифференциальный (ПИД) регулятор:

;

;

где, Тпр – время предварения Тпр2 р

Вычисление настройки регуляторов, обеспечивают степень затухания процесса регулирования более чем 0,75.

На производстве достаточно часто находят настройки П,ПИ,ПИД – регуляторов по приближенным формулам, зависящем от некоторых характерных параметров динамики объекта:

  • времени запаздывания ;

  • постоянной времени Т0 ;

  • коэффициента усиления К0 .

Пропорциональный (П) регулятор:

Пропорционально дифференциальный (ПД) регулятор:

;

Пропорционально-интегрально-дифференциальный (ПИД) регулятор:

; ;

Найденные настройки обеспечивают устойчивый переходной процесс со степенью затухания

Пример:

Определить критическую частоту и настройки . (Рис.1.1.).

Поскольку АФХ П-регулятора имеет вид , то для расчета настройки и частоты получим два уравнения:

Из второго уравнения находиться значение

Решая последнее уравнение, находим =0,0449, затем из первого по формуле:

Определяем настройки регуляторов. Расчет настроек регуляторов по и осуществляется по приближенным формулам:

П-регулятор

1.2.3. Расчет настроек по амплитудно-фазовой характеристики объекта

При использовании метода определения настройки регуля­тора по АФХ объекта необходимо обеспечить выполнение установлен­ных требований к расположению характеристики на комплексной плос­кости, обусловленных заданными значениями показателя колебатель­ности М, запасов устойчивости по модулю С и фазе р, времени регули­рования tр. При отсутствии наперед заданных значений какого-либо из показателей качества следует принимать М = 1,3—1,5, что обес­печит хорошее качество переходных процессов в замкнутой системе регулирования.

Настройка П-регулятора.

Построить АФХ разомкнутой системы с регулятором при k1== 1, совпадающую с АФХ объекта, и провести луч под углом (1/М) к отрицательной полуоси (Рис.1.6.)

Вычертить окружность радиуса r с центром на вещественной отри­цательной полуоси, касающуюся АФХ объекта и луча.

Рассчитать максимальное значение коэффициента усиления П-регулятора по формуле:

(1)

Настройка И-регулятора.

Построить АФХ разомкнутой системы для некоторого фиксирован­ного значения, постоянной времени Т1 интегрального регулятора и k1 = 1 в выражении для его коэффициента усиления kа == k1/T1 , что сведется к повороту по часовой стрелке на 90° векторов АФХ объекта, уменьшенных в T1 раз (Рис.1.7.)

Провести луч под углом и определить радиус r ок­ружности, касающейся луча и построенной АФХ разомкнутой системы.

Рассчитать оптимальное предельное значение коэффициента уси­ления интегрального регулятора:

(2)

Рис.1.6. Рис.1.7.

Рис.1.8.

Настройка ПИ-регу­лятора.

Построить АФХ разомк­нутой системы для нескольких фиксированных значений Ти по выражению

при kp=1, что сведется к повороту на 90° в отрицательном направлении изменен­ного в ТИ раз вектора АФХ объекта и геометрическому суммированию его с исходным, как показано на (Рис1.8.).

Провести луч под углом (1/М) и определить радиусы окружностей, касающихся этого луча и АФХ с фиксированными значениями ТИ.

Определить значения коэффициентов усиления регулятора для каждого ТИ, так же, как и для П-регулятора, т. е. по формуле (1).

Построить кривую границы области устойчивости (при заданном М) в плоскости параметров настройки ПИ-регулятора kp и ТИ (Рис.1.8.). Проведя касательную к этой кривой, можно выявить точку макси­мального отношения kp/TИ, являющегося оптимумом настройки.

Настройка ПИД-регулятора.

Характеристики для различных зна­чений ТИ, при единичном значении kp строится для фиксированного оптимального отношения времени предварения к времени изодрома Тпи 0,5. Выражение для АФХ системы представится в таком виде:

При этом построение све­дется к повороту на 90° в отрицательном направ­лении измененных в (1/ТИ -0,5 ТИ ) раз векторов АФХ объекта и геометрическому сум­мированию

их с исходны­ми векторами (Рис.1.9).

Провести луч под углом (1/М) и определить радиусы окружностей, касающихся этого луча и АФХ с фиксированными значениями ТИ.

Определить значения коэффициентов усиления регулятора для каждого ТИ, так же, как и для П-регулятора, т. е. по формуле (1).

Построить кривую границы области устойчивости (при заданном М) в плоскости параметров настройки ПИ-регулятора kp и ТИ (Рис.1.8.). Проведя касательную к этой кривой, можно выявить точку макси­мального отношения kp/TИ, являющегося оптимумом настройки.

Рис.1.9.

Пример: Математически определяем объект регулирования, получается модель объекта, Рис.1.6. которая описывается апериодическим звеном первого порядка с передаточной функцией первого порядка:

р заменим на

числитель и знаменатель умножаем на знаменатель сопряженный:

Выделяем действительную и мнимую часть, строим АФХ

и

Подставляя значения от 0 до строим АФХ разомкнутой системы с К1=1 для фиксированных значений Тu (в нашем случае Тu=1,1). Для этого вектор АФХ замкнутой системы изменяем в Тu раз, поворачиваем на 900 в отрицательном направлении

( , где Х – длина вектора замкнутой АФХ) и геометрически суммируем его с исходным.

Проводим луч под углом

отрицательной полуоси.

Вычерчиваем окружность радиуса r с центра на вещественной отрицательной полуоси, касающуюся АФХ разомкнутой системы и луча.

Тu=1,1

Х

0

500

0

0

0,1

506,03

-57,05

55,24878

0,2

48,88

-115,36

95,82775

0,3

478,68

-170,39

117,2624

0,4

447,54

-218,13

127,4889

0,5

408,90

-256,01

132,4419

0,6

366,53

-283,22

134,9411

0,8

282,98

-309,15

136,928

1

212,27

-308,49

137,4422

2,1

43,89

-207,15

136,7909

2,5

25,42

-178,19

136,5044

3

12,35

-150,50

136,2153

4

0,71

-113,63

135,8047

5

-3,56

-90,77

135,5327

9

-5,97

-49,79

135,0029

25

-3,25

-17,58

134,5377

80

-1,14

-5,44

134,3482

200

-0,47

-2,17

134,2957

1000

-0,10

-0,43

134,2674

Рассчитываем максимальное значение коэффициента усиления ПИ-регулятора по формуле:

рис.1.10.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]