Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен в шпорах.doc
Скачиваний:
22
Добавлен:
20.04.2019
Размер:
6.95 Mб
Скачать

Постоянные магниты

Поперечные составляющие в постоянных магнитах несколько больше, чем в соленоиде, но есть возможность сформировать более или менее однородное поле. Однако в большинстве случаев это не применяется из-за необходимости применения магнитов большой массы. рассматриваются с протяженным пространством взаимодействия. Поэтому, скажем, увеличение длины прибора в N раз по сравнению с другими приборами приводит к увеличению массы магнитов в N3 раз.

Постоянные магниты применяются в коротковолновой части рабочего диапазона (миллиметровом диапазоне длин волн) и в коротких лампах, там, где получение значимых результатов более важно, чем увеличение массы.

Реверсная магнитная система и мпфс

Данные магнитные системы строятся за счет создания ячеек на основе кольцевых магнитов вдоль всего пространства взаимодействия. Отличие заключается в том, что в реверсной системе количество таких ячеек значительно (иногда на порядок) меньше, чем в МПФС. Выигрыш в массе получается за счет смены полярности магнитной индукции на краях каждого кольцевого магнита. В этом случае увеличение длины прибора в N раз приводит к увеличению массы также в N раз. Конечно, уменьшение количества периодов приводит к необходимости увеличивать массу магнитов, т. е. масса реверсной системы для одной и той же лампы больше, чем МПФС.

На рис показано схематическое построение МПФС и синусоидальное распределение индукции магнитного поля.

Рис.Схема МПФС и синусоидальное распределение индукции магнитного поля

20. Напівпровідникові p-n діоди, їх еквівалентні схеми та параметри, застосування в нвч пристроях та ситемах

Лавинно-пролётный полупроводниковый диод (ЛПД), полупроводниковый прибор с отрицательным сопротивлением, возникающим из-за сдвига фаз между током и напряжением на выводах прибора вследствие инерционных свойств лавинного умножения носителей заряда и конечного времени их пролёта в области р-n-перехода. ЛПД можно назвать твердотельным эквивалентом отражательного клистрона, как эффективного автогенератора сантиметровых волн.Лавинное умножение в р-n-переходе вызвано ударной ионизацией атомов носителями заряда. В отличие от др. приборов этого класса (туннельных диодов, тиристоров, Ганна диодов), отрицательное сопротивление ЛПД проявляется только на СВЧ.

Л ПД применяются для генерирования колебаний в диапазоне частот от 1 до 300 Ггц. Мощность колебаний составляет единицы вт (при кпд ~ 10%). В 1967 был открыт режим работы ЛПД, при котором электрические колебания возникают сразу на 2 частотах: частоте f0, характерной для обычного режима, и её субгармонике f0/fn, где n > 3. Этот режим отличается высокими значениями кпд (до 60% ) и высокими уровнями отдаваемой на субгармониках мощности (до нескольких сотен вт).

Діод Ганна

Д іод Ганна це напівпровідниковий прилад без pn-переходу, що перетворює енергію джерела живлення постійної напруги в енергію надвисокочастотних коливань в результаті виникнення в напівпровіднику домену сильного поля. На відміну від тунельних, лавинно – пробійних та інших діодів, властивості яких визначаються процесами в p-n-переходах, властивості діодів Ганна характеризуються явищами, що виникають в об’ємі напівпровідника з електронною провідністю. Аномальна залежність швидкості електронів від напруженісті електричного поля в деяких напівпровідникових з'єднаннях використовується для посилення і генерації коливань НВЧ - діапазону. Діод Ганна (ДГ) являє собою однорідний кристал напівпровідникового матеріалу, на основі елементів III-V груп таблиці Менделєєва. До таких напівпровідниковим матеріалами відноситься GaAs, InSb, InAs, ZnSe і CdTe. Однак, найбільш характерним для діодів Ганна і найбільш дослідженим є GaAs. На рисунку 1 представлена ​​структура діода Ганна. Площа торців кристала S = 100 100мкм2, довжина d = 5 - 100мкм. На торці кристала нанесені металеві контакти. Тунельний діод

О сновные параметры Т. д.: макс. прямой ток Iмакс и мин. прямой ток Iмин, соответствующие им напряжения Uмакс и Uмин (значения этих параметров для Т. д. на GaAs и Ge приведены на рис. Г); отрицат. дифференц. сопротивление, определяемое наклоном падающего участка ВАХ (ВГ на кривой 2, рис. 1), имеет значения (по абс. величине) для разл. типов Т. д. от единиц до десятков Ом Т. д. могут работать в более широком интервале темп-р, чем обычные диоды, изготовленные на основе того же материала (до 200 °С германиевые; до 600 °С арсенидгаллиевые). Поскольку рабочий диапазон смещений Т. д. расположен в области значительно более низких напряжений по сравнению с др. полупроводниковыми приборами, то они относительно маломощны (выходная мощность порядка мВт). Малая инерционность процесса туннелирования электронов позволяет применять Т. д. на частотах СВЧ-диапазона вплоть до десятков ГГц. Предельная рабочая частота Т. д. (при использовании его в качестве прибора с отрицат. сопротивлением) выражается через параметры эквивалентной схемы (рис. 3) в виде а резонансная частота паразитных колебаний определяется ф-лой Для усилит. Т. д. необходимо, чтобы выполнялись условия , где fо - рабочая частота. Величинами Rп Сп, rs, а соответственно и частотными характеристиками диода можно управлять, если изменять степень легирования областей полупроводника по обе стороны от р-n-перехода (сувеличением степени легирования частотный предел Т. д. возрастает). Частотные соотношения Т. д. накладывают также ограничения на технологию изготовления и конструктивное оформление диодов: в Т. д., чтобы достичь малых Lк, электрич. контакт к вплавленной металлич. капле на кристалле полупроводника выполняют с помощью металлич. мембраны, ленточного лепестка или пластины; при этом Lк составляет 10-10 Гн. Обычно Т. д. оформляются в металлокерамич. корпусе.

Рис. 3. Эквивалентная схема туннельного диода: Rп и Сп-дифференциальное сопротивление и ёмкость р -n-перехода; rs-омическое сопротивление потерь; Lk и Ск - индуктивность и ёмкость корпуса.

Т. д. находят применение в схемах усилителей и генераторов СВЧ-диапазона, в быстродейств. переключающих устройствах, устройствах памяти с двоичным кодом и т. д.