Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
М и ТКМ.doc
Скачиваний:
107
Добавлен:
20.04.2019
Размер:
25.7 Mб
Скачать

19.4. Спекание и доводка заготовок

Спекание изделий из однородных металлических порошков производится при температуре, составляющей 0,7–0,9 температуры плавления наиболее легкоплавкого компонента. В смесях максимальная когезия (сцепление частиц) достигается вблизи температуры плавления основного компонента, а в цементированных карбидах – вблизи температуры плавления связующего. При спекании между частицами образуются прочные межмолекулярные связи, в результате чего малопрочная заготовка превращается в прочное твердое изделие заданной плотности. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере, в атмосфере нейтральных газов или в вакууме. Прессовка в процессе спекания превращается в монолитное изделие, технологическая связка выгорает.

Атмосфера спекания изделий оказывает сущест­венное влияние на свой­ства конечного продукта. По сравнению с нейтральными средами (азот, аргон) восстановительные среды (водо­род, диссоциированный аммиак) дают лучшие результа­ты. Объясняется это химическим воздействием восстано­вительной среды на окисные пленки. В результате вос­становления окислов активируется миграция атомов металла к контактным участкам. Наиболее активный вос­становитель — водород, его применение дает наилучшие результаты. Быстро и полно проходит спекание в ваку­уме, которое (в отличие от спекания в нейтральных ат­мосферах) начинается при более низких температурах и дает высокую плотность и прочность изделий за счет быстрого выгорания летучих примесей, испарения влаги и адсорбированных газов и диссоциации окислов.

Спекание в среде водорода и в вакууме целесообразно только при производстве дорогих и высокочистых материалов. Диссоциированный аммиак рекомендуется для небольших производств. Экзотермический, эндотермический и конверсированный природный газ широко применяют в массовом производстве в печах спекания непрерывного действия.

В зависимости от состава шихты различают твердофазное спекание (т. е. спекание без образования жидкой фазы) и жидкофазное, при котором легкоплавкие компоненты смеси порошков расплавляются.

Твердофазное спекание. При твердофазном спекании протекают следующие основные процессы: поверхностная и объемная диффузия атомов, усадка, рекристаллизация, перенос атомов через газовую среду.

Все металлы имеют кристаллическое строение и уже при комнатной температуре совершают значительные колебательные движения относительно положения равновесия. С повышением температуры энергия и амплитуда атомов увеличиваются и при некотором их значение возможен переход атома в новое положение, где его энергия и амплитуда снова увеличиваются, и возможен новый переход в другое положение. Такое перемещение атомов носит название диффузии и может совершаться как по поверхности (поверхностная диффузия), так и в объеме тела (объемная диффузия). Движение атомов определяется занимаемым ими местом. Наименее подвижны атомы, расположенные внутри контактных участков частичек порошка, наиболее подвижны атомы, расположенные свободно – на выступах и вершинах частиц. Вследствие большей подвижности атомов свободных участков и меньшей подвижности атомов контактных участков обусловлен переход значительного количества атомов к контактным участкам. Поэтому происходит расширение контактных участков и округление пустот между частицами без изменения объема при поверхностной диффузии. Сокращение суммарного объема пор возможно только при объемной диффузии. При этом происходит изменение геометрических размеров изделия – усадка.

Усадка при спекании может проявляться в изменении размеров и объема, и поэтому различают линейную и объемную усадку. Обычно усадка в направлении прессования больше, чем в поперечном направлении.

Свойства исходных порошков – величина частиц, их форма, состояние поверхности, тип окислов и степень совершенства кристаллического строения – определяют скорость изменения плотности и свойства спрессованных изделий. При одинаковой плотности спеченных изделий механические и электрические свойства тем выше, чем меньше были частицы порошка, шероховатость поверхности частиц и дефекты кристаллического строения способствуют усилению диффузии, увеличению плотности и прочности изделия. Увеличение давления прессования приводит к уменьшению усадки (объемной и линейной), повышению всех показателей прочности – сопротивлению разрыву и сжатию, твердости. С повышением температуры плотность и прочность спеченных изделий возрастают тем быстрее, чем ниже было давление прессования.

Обычно температура спекания составляет 0,7–0,9 температуры плавления наиболее легкоплавкого материала, входящего в состав шихты (смеси порошков). Выдержка при постоянной температуре вызывает сначала резкий, а затем более медленный рост плотности, прочности и других свойств спеченного изделия. Наибольшая прочность достигается за сравнительно короткое время и затем почти не увеличивается. Время выдержки для различных материалов длится от 30–45 минут до 2–3 часов. Атмосфера спекания влияет на показатели качества. Плотность изделий выше при спекании в восстановительной, чем при спекании в нейтральной среде. Очень полно и быстро проходит спекание в вакууме, которое по сравнения со спеканием в нейтральной среде обычно начинается при более низких температурах и дает повышенную плотность изделия.

Жидкофазное спекание. При жидкофазном спекании в случае смачивания жидкой фазой твердой фазы увеличивается сцепление твердых частичек, а при плохой смачиваемости жидкая фаза тормозит процесс спекания, препятствуя уплотнению. Смачивающая жидкая фаза приводит к увеличению скорости диффузии компонентов и облегчает перемещение частиц твердой фазы. При жидкофазном спекании можно получить практически беспористые изделия.

Для спекания используют разнообразные промышленные печи, обеспечивающие равномерность нагрева и охлаждения, полную герметичность рабочего пространства и необходимую производительность. Наиболее распространены электропечи сопротивления с нихромовыми, молибденовыми нагревателями. Для спекания заготовок возможно использование прямого нагрева пропусканием тока непосредственно через спекаемое изделие, или индукционного нагрева.

Иногда для получения изделий окончательной формы и размеров или придания этим изделиям окончательных свойств после спекания их обрабатывают дополнительно. К видам окончательной обработки относятся: калибрование, обработка резанием, термическая и химико-термическая обработка, нанесение защитных и декоративных покрытий.

При калибровании изделий достигается нужная точность размеров (6–11 квалитет точности), улучшается качество поверхности (Ra = 1,25–0,32 мкм) и повышается прочность. Примерно 80 % продукции проходят эту операцию.

Отжиг в защитной атмосфере назна­чается для достижения требуемой структуры материала; выравнивания химического состава детали; снижения твердости, что облегчает последующую механическую обработку.

Науглероживание, азотирование и цианиро­вание проводятся для повышения износостойкости по­верхностных слоев изделий. Хромирование, никелирова­ние, кадмирование, оксидирование и фосфатирование защищают малопористые детали от коррозии.

Масляная пропитка пористых подшипников обеспечивает длитель­ное самосмазывание трущихся поверхностей в работе за счет того, что при повышении температуры в пори­стом подшипнике ослабевают капиллярные силы, удер­живающие масло в порах. Кроме того, коэффициент тер­мического расширения масла выше, чем металла.

В качестве окончательной в некоторых случаях ис­пользуется механическая обработка, направленная на достижение заданных размеров деталей. Обработку из­делий ведут методами точения, сверления, фрезерова­ния, шлифования, полирования. Шлифованные порошко­вые детали имеют шероховатость поверхности Rа= 0,32–0,16 мкм.

Преимущества порошковой металлургии:

  • безотходность. Технологию порошковой металлургии можно назвать безотходной. Потери сырья составляют не более 5 %;

  • производительность. Возможна полная автоматизация изготовления деталей на пресс-автоматах. Простые детали можно прессовать свыше 5000 штук в час;

  • высочайшая точность. Высокая точность формы и размеров детали обеспечивается особенностями технологии, высокоточным прессовочным и калибровочным пресс-инструментом (6–7 квалитет);

  • широкий диапазон получаемых свойств. Можно регулировать физические, механические, электрические, магнитные и др. свойства производимой продукции. Например, задавать нужные электрические свойства контактов, магнитные свойства магнитопроводов и механические свойства конструкционных деталей. Возможность изготавливать пористые материалы. Например, можно задавать необходимую пористость для фильтров или самосмазываемых подшипников скольжения;

  • получение уникальных свойств, не достижимых другими традиционными методами. Порошковая технология предоставляет возможности для создания псевдосплавов (из несплавляющихся металлов) и материалов с особыми специальными свойствами, которые нельзя получить, применяя другие известные промышленные методы изготовления. Также она предоставляет возможность получения материалов высокой чистоты.