Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
по ИНФОРМ СИСТЕМАМ 1-7.doc
Скачиваний:
3
Добавлен:
18.04.2019
Размер:
145.92 Кб
Скачать

Два способа кодирования изображения

Растровые изображения очень хорошо передают реальные образы. Они замечательно подходят для фотографий, картин и в других случаях, когда требуется максимальная "естественность". Такие изображения легко выводить на монитор или принтер, поскольку эти устройства тоже основаны на растровом принципе. Однако, есть у них и ряд недостатков. Растровое изображение высокого качества (с высоким разрешением и большой глубиной цвета) может занимать десятки, и даже сотни мегабайт памяти. Для обработки их нужны мощные компьютеры (но и они нередко "задумываются" на десятки минут). Любое изменение размеров неизбежно приводит к ухудшению качества: при увеличении пикселы не могут появиться "из ничего", при уменьшении -- часть пикселов будет просто выброшена.

Но есть другой способ представления изображений -- объектная (или векторная) графика. В этом случае в памяти хранится не сам рисунок, а правила его построения (то есть, например, не все пикселы круга, а команда "построить круг радиуса 30 с центром в точке (50, 135) и закрасить его красным цветом"). Быстродействия современных компьютеров вполне достаточно, чтобы перерисовка происходила почти мгновенно. На первый взгляд, все становится гораздо более сложным. Зачем же это нужно?

Во-первых, и это самое главное, векторное изображение можно как угодно масштабировать, выводить на устройства, имеющие любое разрешение, -- и всегда будет получаться результат с наивысшим для данного устройства качеством. Ведь картинка каждый раз "рисуется заново", используя столько пикселов, сколько возможно.

Во-вторых, в векторном изображении все части (так называемые "примитивы") могут быть изменены независимо друг от друга, Любой из них можно увеличить, повернуть, деформировать, перекрасить, даже стереть -- остальных объектов это ни коим образом не коснется.

Наконец, даже очень сложные векторные рисунки, содержащие тысячи объектов редко занимают более нескольких сотен килобайт, т.е. в десятки, сотни, а то и тысячи раз меньше аналогичного растрового.

Но почему, если все так хорошо, векторная графика не вытеснила растровую? Сам принцип ее формирования предполагает использование исключительно объектов с ровными четкими границами, а это сразу выдает их искусственность. Поэтому, область применения векторной графики довольно ограничена: это чертежи, схемы, стилизованные рисунки, эмблемы и другие подобные изображения.

Сканирование

Сканирование - последовательное движение фокуса внимания - по элементам зрительного поля при опознании - признаков окружающего мира.

Сканирование - определения в Интернете:

Ска́нер (scanner) — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. ...

- процесс получения любого изображения (слайда, фотографии и т.п. ...

- процесс поэлементного анализа изображения по заданной траектории. ...

- (scanning) - аналого-цифровое преобразование изображения в цифровую растровую форму ...

- перевод графического изображения в цифровой вид (в графический файл).

- процесс преобразования аналоговой информации в цифровую при помощи специального электронного устройства (сканера).

Ска́нер (англ. scanner) — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием. В большинстве сканеров для преобразования изображения в цифровую форму применяются светочувствительные элементы на основе приборов с зарядовой связью (ПЗС) (англ. Charge-Coupled Device, CCD).

По способу перемещения считывающей головки и изображения относительно друг друга сканеры подразделяются на ручные (англ. Handheld), рулонные (англ. Sheet-Feed), планшетные (англ. Flatbed) и проекционные. Разновидностью проекционных сканеров являются слайдсканеры, предназначенные для сканирования фотопленок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель (ФЭУ).

Принцип работы однопроходного планшетного сканера состоит в том, что вдоль сканируемого изображения, расположенного на прозрачном неподвижном стекле, движется сканирующая каретка с источником света. Отраженный свет через оптическую систему сканера (состоящую из объектива и зеркал или призмы) попадает на три расположенных параллельно друг другу фоточувствительных полупроводниковых элемента на основе ПЗС, каждый из которых принимает информацию о компонентах изображения.