Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты по геометрии.docx
Скачиваний:
30
Добавлен:
16.04.2019
Размер:
1.03 Mб
Скачать

23. Векторное уравнение эллипса.

24. Гипербола .Вывод канонического уравнения гиперболы

25. Парабола. Вывод канонического уравнения параболы.

Пусть на плоскости заданы точка F и прямая , не проходящая через F. Парабола - множество всех тех точек M плоскости, каждая из которых равноудалена от точки F и прямой . Точка F называется фокусом, прямая - директрисой параболы; (OF) - ось, O - вершина, - параметр, - фокус, - фокальный радиус.

Каноническое уравнение:

Эксцентриситет:

Фокальный радиус:

Уравнение директрисы:

Уравнение касательной в точке

Свойство касательной к параболе: (М - точка касания; N - точка пересечения касательной с осью Ox).

Уравнение нормали в точке

Уравнение диаметра, сопряженного хордам с угловым коэффициентом k: y = p/k.

Параметрические уравнения параболы:

Полярное уравнение:

26. Общие уравнения линии второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке , оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны а и b. Поместим в центре эллипса начало новой системы координат , оси которой и параллельны соответствующим осям Ох и Оу и одинаково с ними направленны (см. рис.41).

В этой системе координат уравнение Рис.41.

эллипса имеет вид

Так как , то в старой системе координат уравнение эллипса запишется в виде

Аналогично рассуждая, получим уравнение гиперболы с центром в точке и полуосями а и Ь (см. рис. 42):

И, наконец, параболы, изображенные на рисунке 43, имеют соответствующие уравнения.

Уравнение Ac2 + Су2 + 2Dx + 2Еу + F = О

Уравнения эллипса, гиперболы, параболы и уравнение окружности после преобразований (раскрыть скобки, перенести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помощью единого уравнения вида

(11.14)

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка?

Ответ дает следующая теорема.

Теорема 11.2. Уравнение (11.14) всегда определяет: либо окружность (при А=С), либо эллипс (при А • С > 0), либо гиперболу (при А • С < 0), либо параболу (при АС = 0). При этом возможны случаи вырождения: для эллипса (окружности) - в точку или мнимый эллипс (окружность), для гиперболы - в пару пересекающихся прямых, для параболы - в пару параллельных прямых.

Пример 11.1. Установить вид кривой второго порядка, заданной уравнением

Решение: Предложенное уравнение определяет эллипс . Действительно, проделаем следующие преобразования:

Получилось каноническое уравнение эллипса с центром в и полуосями и .