Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
измерение информации.doc
Скачиваний:
25
Добавлен:
25.12.2018
Размер:
543.23 Кб
Скачать
    1. Представление числовой информации

Системы исчисления

Система счисления – это способ представления чисел и соответствующие ему правила действия с числами.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

I V L C D M

1 5 10 50 100 500 1000

П 1.11. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно 232.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа – большая, то их значения вычитаются, например:

VI = 5 + 1 = 6, а IV = 5 – 1 = 4.

П 1.12. Записать римское число MCMXCVIII в десятичной системе

MCMXCVIII = 1000 + (- 100 + 1000) + (-10 +100) + 5 + 1 + 1+ 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая – три десятка, третья – три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Основание

Название

Алфавит

n = 2

двоичная

0 1

n = 3

троичная

0 1 2

n = 8

восьмеричная

0 1 2 3 4 5 6 7

n = 16

шестнадцатеричная

0 1 2 3 4 5 6 7 8 9 A B C D E F

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например: 1011012, 36718, 3В8F16.

В системе счисления с основанием q (q-ичная система счисления) единицами разрядов служат последовательные степени числа q. q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа в q-ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, …, q – 1. Запись числа q в q-ичной системе счисления имеет вид 10. Развернутой формой записи числа называется запись в виде

Здесь Aq –само число, q – основание системы счисления, ai – цифры данной системы счисления, n – число разрядов целой части числа, m – число разрядов

дробной части числа.

Свернутой формой записи числа называется запись в виде

которой пользуются в повседневной жизни.

П 1.13. Записать в развернутом виде число А10 = 4718,63

А10 = 4*103 + 7*102 + 1*101 + 8*100 + 6*10-1 + 3*10-2 .

П 1.14. Записать в развернутом виде число А8 = 7764,1

А8 = 7*83 + 7*82 + 6*81 + 4*80 + 1*8-1 .

П 1.15. Записать в развернутом виде число А16 = 3АF

А16 = 3*163 + 10*161 + 15*160 .

П 1.16. Все числа 1123, 1011012, 15FC16, 101,112 перевести в десятичную систему

1123 = 1*32 + 1*31 + 2*30 = 9 + 3 + 2 = 1410,

1011012 = 1*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 32 + 8 + 4 + 1 = 4510,

15FC16 = 1*163 + 5*162 + 15*161 + 12 = 4096 + 1280 + 240 + 12 = 562810,

101,112 = 1*22 + 0*21 + 1*20 + 1*2-1 + 1*2-2 = 4 + 1 + ½ + ¼ = 5 + 0,5 + 0, 25 = 5,7510.

П 1.17. У жителей села «Не десятичное» на ферме имеется 120 голов рогатого скота, из них 53 коровы и 34 быка. Какая система счисления используется сельчанами?

Решение: Самая большая цифра в рассматриваемых числах – это цифра 5. Значит, она входит в состав алфавита искомой системы счисления. Тогда основание системы счисления больше 5. Задачу можно решить методом подстановки оснований 6 и 7 или математически.

Примем за х основание искомой системы счисления. Тогда после перевода чисел, стоящих в правой и левой частях, в десятичную систему счисления получим следующее равенство: х2 + 2х = 5х + 3 + 3х + 4. После преобразований получим уравнение х2 – 6х – 7 = 0.

Ответ х = 7.

Перевод десятичных чисел в другие системы счисления

  1. Последовательно выполнить деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получите неполное частное, меньшее делителя;

  2. полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

  3. составить число в новой системе счисления, записывая его, начиная с последнего частного.

П 1.18. Перевести число 3710 в двоичную систему счисления. Для обозначения цифр в записи числа используем символику: а5 а4 а3 а2 а1 а0.

Отсюда 3710 = 1001012.

1 = а5

П 1.19. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы счисления:

Отсюда следует: 31510 = 4738 = 13В16.

Напомним, что 1110 = В16.

Перевод двоичных чисел в системы счисления с основанием 2n

Для того, чтобы целое двоичное число записать в системе счисления с основанием q = 2n (4, 8, 16 и т.д.), нужно:

  1. данное двоичное число разбить справа налево на группы по n цифр в каждой группе;

  2. если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов;

  3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2n.

Ниже приводится таблица с числами систем счисления с основаниями q = 2n, где n = 1, 3, 4 и десятичной системы счисления.

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

А

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

П 1.20. Перевести число 11001010011010101112 в восьмеричную систему счисления.

Разбиваем число на группы по три цифры – триады (т.к. q = 8, 8 = 2n, n = 3) справа налево и, пользуясь таблицей, записываем соответствующее восьмеричное число.

001

100

101

001

101

010

111

1

4

5

1

5

2

7

Ответ: 14515278

П 1.21. Перевести число 11001010011010101112 в шестнадцатеричную систему счисления.

Разбиваем число на группы по четыре цифры – тетрады (т.к. q = 16, 16 = 2n, n = 4) справа налево и, пользуясь таблицей, записываем соответствующее шестнадцатеричное число.

0110

0101

0011

0101

0111

6

5

3

5

7

Ответ: 6535716

П 1.22. Чему равно значение основания системы счисления Х, если известно, что 175Х = 7D16?

Решение: Запишем числа 175Х и 7D16 в десятичной системе счисления.

175Х = Х 2 + 7Х + 5,

7D16 = 7·16 + 13 = 125.

Но так как эти числа равны, то Х 2 + 7Х + 5 = 125.

Корни полученного квадратного уравнения: Х = 8 и Х = -15 (не подходит, так как основание системы счисления не может быть отрицательной величиной). Следовательно, основание системы счисления – 8.

Для того, чтобы произвольное число, записанное в системе счисления с основанием q = 2n, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-разрядным эквивалентом в двоичной системе счисления.

Применительно к компьютерной информации часто используются системы с основанием 8 (восьмеричная) или 16 (шестнадцатеричная).

П 1.23. Перевести двоичное число 110111101011101111 в шестнадцатеричную систему счисления.

Решение: Разделим данное число на группы по четыре цифры, начиная справа. Если в крайней левой группе окажется меньше четырех цифр, то дополним ее нулями

0011 0111 1010 1110 1111.

А теперь, глядя на двоично-шестнадцатеричную таблицу, заменим каждую двоичную группу на соответствующую шестнадцатеричную цифру

3 7 А Е F.

Следовательно

1101111010111011112 = 37AEF16.

Тестовые задачи

Т 1.21. В саду 100q плодовых кустарников, из них 33 куста малины, 22 куста смородины красной, 16 кустов черной смородины и 17 кустов крыжовника. В какой системе счисления подсчитаны деревья?

Варианты ответа: а) 7; б) 9; в) 11; г) 13.

Т 1.22. Было 53q груши. После того, как каждую из них разрезали пополам, стало 136 половинок. В системе счисления с каким основанием вели счет?

Варианты ответа: а) 11; б) 13; в) 15; г) 17.

Т 1.23. Какое число больше?

Варианты ответа: а) 1527; б) 15210; в) 15212; г) 15216.

Т 1.24. Переведите двоичные числа в восьмеричную систему счисления:

а) 110000110101; 1010101 б) 11100001011001; 1000010101.

Т 1.25. Переведите двоичные числа в шестнадцатеричную систему счисления: а) 11011010001; 111111111000001 б) 10001111010; 100011111011.

Т 1.26. Переведите шестнадцатеричные числа в двоичную систему счисления: а) 1АС7 б) FACC.

Т 1.27. Переведите числа из восьмеричной системы счисления в шестнадцатеричную: а) 774; б) 665.