Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
.docx
Скачиваний:
15
Добавлен:
20.12.2018
Размер:
524.94 Кб
Скачать
  1. Вопрос

Предмет физики

Фи́зика (от др.-греч. φύσις «природа») — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания

В современном виде физика включает в себя следующие основные разделы:

1) механику;

2) акустику;

3) учение о теплоте;

4) учение об электричестве;

5) оптику;

6) молекулярную физику;

7) атомную физику;

8) физику элементарных частиц, атомного ядра и космических лучей;

9) учение о гравитационном поле.

Те́ло, или физическое тело в физике — материальный объект, имеющий массу и отделенный от других тел границей раздела. Тело есть форма существования вещества

Физи́ческая величина́ — физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно.

Значение физической величины — число, вектор, или в самом общем случае тензор, характеризующие эту физическую величину, с указанием единицы измерения, на основе которой эти числа, вектор или тензор были определены.

  1. Вопрос

Естественные науки - совокупность наук о природе. Традиционно естественными науками считаются: математика, физика, химия, биология, науки о Земле, науки о человеке как социально-биологическом существе.

Взаимосвязь химии с физикой

История взаимодействия химии и физики полна примеров обоюдного обмена идеями, объектами и методами исследования. На разных этапах своего развития физика «снабжала» химию понятиями и теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом чем больше усложнялись химические исследования, тем больше аппаратуры и методов физических расчетов проникало в химию. Развитие современной науки подтвердило глубокую связь между физикой и химией. Они связаны между собой по происхождению. Связь эта носит генетический характер, т.е. образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Химические процессы базируются на электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на стыке которых возникли химия изотопов и радиационная химия.

Физика и химия практически изучают одни и те же объекты, но только каждая наука видит в этих объектах свой предмет исследования. Так, молекула является объектом, изучаемым не только химией, но и молекулярной физикой. Химия изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы. Молекулярная физика  изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазу и обратно,– свойства, не связанные с изменением состава молекул и их внутреннего химического строения.

Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах также убедительно свидетельствует о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии (обычно в виде тепла и света), называются экзотермическими реакциями. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы.  В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль). Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния вещества и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что ключ к объяснению свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов его внешней оболочки. Именно новейшая физика блестяще решила такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д.

На стыке физики и химии возникла и успешно развивается физическая химия – сравнительно молодое направление, которое оформилась в конце XIX в. в результате успешных попыток коли-чественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие периодического закона), Я. Вант-Гоффа (термоди-намика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения вещества в связи с взаимной обуслов-ленностью их физическими свойствами, условия протекания химических реакций и соверша-ющиеся при этом физические явления.

В первой половине XX в. на стыке химии и новых разделов физики (квантовой механики, электронной теории атомов и молекул) возникает пограничная наука, которую стали называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений, а также к изучению механизма химических реакций. Химическая физика изучает взаимосвязь и взаимо-переход химической и субатомной форм движения материи.

Внутри физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. в самостоя-тельную науку выделилась также выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергетики возникла и получила большое развитие новейшая отрасль физической химии – химия высоких энергий: радиационная химия, изучающая реакции, протекающие под действием ионизирующего излучения, и химия изотопов.

Вообще физическая химия сейчас рассматривается как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее теории имеют большое значение для развития как неорганической, так и органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса. Также во внимание стали браться связи и зависимости химического процесса от воздействия явлений, присущих другим формам движения материи (светового и радиационного облучения, светового и теплового воздействий и т.д.).

Таким образом, химия XX в. предстает перед нами как весьма многообразная и разветвленная система знаний, которая находится в процессе интенсивного развития.

  1. Вопрос

Гармонические Колебания

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

где wt - величина под знаком косинуса или синуса; w- коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью wv = wА). Через некоторое время t радиус повернется на угол ф: ф=wt.

При таком движении по окружности точки М ее проекция на ось х Мх будет совершать движение вдоль оси х, координата которой х будет равна х = А • cos ф = = А • cos wt. Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания. Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки Мх, совершающей механические гармонические колебания? Координаты колеблющейся точки Мх одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) - wt = 2ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенныйцикл времени, равный . Поэтому величину w назвали циклической (или круговой) частотой.

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид: 

Величину ф0называют начальной фазой.

Скорость точки Мх найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п. Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы Fx, которая обеспечивает гармоническое механическое движение:

Величина Fx пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний.

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: Fyпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

  1. Движение тела на пружине будет происходить по гармоническому закону, т. е. тело m будет совершать механические гармонические колебания;

  2. Сравнивая коэффициенты перед х уравнений (4.6) и (4.9), заключаем, что циклическая частота этих гармонических колебаний будет равна:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a.

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила Fx = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a.

Заменим sin а в уравнении (4.12), получим следующее уравнение:

Уравнение (4.13) показывает, что ускорение колебания маятника прямо пропорционально смещению и противоположно ему направлено. Следовательно, маятник будет совершать механические гармонические колебания с циклической частотой

и поэтому, согласно уравнению (4.2), период колебаний его будет равен:

Превращение энергии при гармонических механических колебаниях рассмотрим на примере пружинного маятника. В любой момент времени полная энергия колеблющегося груза (Еполн) будет состоять из кинети-

Полная энергия при гармонических механических колебаниях пропорциональна квадрату амплитуды и квадрату циклической частоты.

На рис. 65 качественно изображены графики зависимостей потенциальной и кинетической энергии пружинного маятника от координаты х.

На рис. 66 представлены качественные графики зависимостей кинетической и потенциальной энергии от времени.

За начальный момент времени принято положение тела, максимально отклоненное от положения равновесия. Частота колебания потенциальной и кинетической энергии в два раза больше, чем частота колебания движущегося тела.