Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на билеты.docx
Скачиваний:
33
Добавлен:
19.12.2018
Размер:
2.36 Mб
Скачать

3)Центральная оптическая система. Действительное и мнимое изображение. Тонкая линза. Фокус, фокальная плоскость.

1. Оптическая система – это совокупность оптических сред, разделенных оптическими поверхностями, которые ограничиваются диафрагмами. Оптическая система предназначена для формирования изображения путем перераспределения в пространстве электромагнитного поля, исходящего из предмета (преобразования световых пучков).

Преобразование световых пучков в оптической системе происходит за счет преломления и отражения света поверхностями, а также за счет ограничения пучков диафрагмой. Кроме того, пучки света могут преобразовываться за счет дифракции.

В наиболее общем случае оптическая система может состоять из следующих функциональных элементов:

оптические среды,

оптические поверхности,

зеркала,

диафрагмы,

дифракционные оптические элементы.

Оптические среды

Оптические среды – это прозрачные однородные среды с точным значением показателя преломления (с точностью до 4-6 знаков после запятой).

В качестве оптических сред в оптических системах в основном применяют:

воздух (вакуум) ;

оптические стекла – точно известны их показатели преломления и различные оптико-физические свойства ;

оптические кристаллы – работают в более широком диапазоне длин волн, чем стекла.

Оптические системы используются в широком интервале длин волн (от УФ до ИК), поэтому важно знать показатели преломления стекол и кристаллов для разных длин волн. Дисперсия оптических материалов – это зависимость показателя преломления от длины волны. Она описывается дисперсионными формулами, называемыми формулами Зельмейера:

(5.1.1)

(5.1.2)

Все стекла отличаются друг от друга характером зависимости показателя преломления от длины волны. Можно описывать оптические материалы либо значениями коэффициентов дисперсионной формулы, либо непосредственно значениями показателя преломления для различных длин волн.

Оптические материалы могут работать только в определенном интервале длин волн (от до ), в пределах которого показатель преломления хорошо описывается дисперсионной формулой. Вблизи границ этого интервала зависимость показателя преломления сильно отличается от описанного дисперсионной формулой (показатель преломления либо резко убывает, либо резко увеличивается). Пограничные интервалы длин волн называются полосами поглощения. У различных стекол эти полосы разные.

Основными характеристиками стекол являются показатель преломления для основной длины волны и общая дисперсия , где , – наибольшая и наименьшая длины волн, которые пропускает стекло.

В качестве опорных или основных длин волн для видимой области сейчас используются: центральная длина волны , крайние длины волн , . Ранее в качестве основных длин волн использовались: .

Оптическое стекло характеризуется показателем преломления для основной длины волны (или ), а также общей дисперсией (или ).

Еще одной важной характеристикой стекла является число Аббе (коэффициент относительной дисперсии):

(5.1.3)

или

Эрнст Аббе (Ernst Abbe) – немецкий ученый, основатель современной прикладной оптики, научный руководитель фирм Carl Zeiss и Schott (конец XIX века).

Чем меньше число Аббе, тем больше дисперсия, то есть сильнее зависимость показателя преломления от длины волны. По числу Аббе оптические стекла делят на две группы:

– кроны;

– флинты.

Комбинация стекол, принадлежащим различным группам, дает возможность создавать высококачественные оптические системы. Кроны и флинты – это основные группы оптических стекол. Их названия сформировались в Англии в XVIII веке, когда впервые было основано промышленное производство оптических стекол.

Центрированная оптическая система

Центрированная оптическая система – это оптическая система, которая имеет ось симметрии (оптическую ось) и сохраняет все свои свойства при вращении вокруг этой оси.

Для центрированной оптической системы должны выполняться следующие условия:

все плоские поверхности перпендикулярны оси,

центры всех сферических поверхностей принадлежат оси,

все диафрагмы круглые, центры всех диафрагм принадлежат оси,

все среды либо однородны, либо распределение показателя преломления симметрично относительно оси.

Центрированные оптические системы могут включать в себя плоские зеркала и отражающие призмы, ломающие оптическую ось, но по сути не влияющие на симметрию системы (рис.5.1.2).

Рис.5.1.2. Центрированная оптическая система с изломом оптической оси.

Нумерация элементов оптической системы ведется по ходу луча (рис.5.1.3). Все расстояния между поверхностями (толщины линз или воздушные промежутки) откладываются по оси.

Рис.5.1.3. Нумерация элементов оптической системы.

Правила знаков

Для удобства чтения оптических схем и компьютерных расчетов в оптике приняты единые правила знаков.

Положительным направлением света считается распространение слева направо.

Осевые расстояния между преломляющими поверхностями считаются положительными, если они измеряются по направлению распространения света (слева направо) (рис.5.1.4).

Радиус кривизны поверхности считается положительным, если центр кривизны находится справа от поверхности (поверхность обращена выпуклостью влево) (рис.5.1.4).

Угол между лучом и оптической осью считается положительным, если для совмещения оси с лучом ось нужно вращать по часовой стрелке (рис.5.1.4).

Отрезки, перпендикулярные оптической оси считаются положительными, если они располагаются над осью (рис.5.1.4).

Рис.5.1.4. Правила знаков.

На чертежах и рисунках всегда указывают знак отрезков и углов. При оптических расчетах считается, что после каждой отражающей поверхности показатель преломления, осевое расстояние и угол отражения меняют знак на противоположный.

Луч может пройти одну и ту же поверхность несколько раз, поэтому физическое и расчетное число поверхностей может различаться. Например, на рис.5.1.5 показаны 8 физических и 12 расчетных поверхностей.

Рис.5.1.5. Физические и расчетные поверхности.

Примеры описания конструктивных параметров оптических систем с учетом правила знаков рассматриваются в практическом занятии "Правило знаков в оптике. Основные законы распространения света", в пункте "2.1. Правила знаков и записи конструктивных параметров".

По составу оптические системы делятся на:

линзовые (нет зеркал, кроме плоских для излома оптической оси),

зеркальные,

зеркально-линзовые.

2. Опти́ческое изображе́ние — картина, получаемая в результате прохождения через оптическую систему световых лучей, распространяющихся от объекта, и воспроизводящая его контуры и детали.[1]

На практике часто меняют масштаб изображения предметов и проецируют его на какую-либо поверхность.

Соответствие объекту достигается, когда каждая его точка изображается точкой, хотя бы приблизительно. При этом различают два случая: действительное изображение и мнимое изображение.

Действительное изображение создаётся, когда после всех отражений и преломлений лучи, вышедшие из одной точки предмета, собираются в одну точку.

Действительное изображение нельзя видеть непосредственно, но можно увидеть его проекцию, просто поставив рассеивающий экран. Действительное создаётся такими оптическими системами, как объектив (например, кинопроектора или фотоаппарата) или одна положительная линза.

Мнимое изображение — такое, которое можно видеть глазом. При этом каждой точке предмета соответствует выходящий из оптической системы пучок лучей, которые, если бы продолжить их обратно прямыми линиями, сошлись бы в одной точке; возникает видимость, что пучок выходит именно оттуда. Мнимое изображение создаётся такими оптическими системами, как бинокль, микроскоп, отрицательная или положительная линза (лупа), а также плоское зеркало.

Во всякой реальной оптической системе неизбежно присутствуют аберрации, в результате чего лучи (или их продолжения) не сходятся идеально в одной точке, и кроме того, максимально близко сходятся не совсем там, где нужно. Изображение получается несколько размытым и геометрически не полностью подобным предмету; возможны и другие дефекты.

Пучок лучей, который расходится из одной точки или сходится в ней, называется гомоцентрическим. Ему соответствует сферическая световая волна. Задача большинства оптических систем —- преобразовывать расходящиеся гомоцентрические пучки в гомоцентрические же, тем самым создавая мнимое или действительное изображение, чаще всего, в другом масштабе по отношению к предмету.

Стигматическое изображение (от др.-греч. στίγμα — укол, рубец) — оптическое изображение, каждая точка которого соответствует одной точке изображаемого оптической системой объекта.

Стигматическое изображение не обязательно геометрически подобно изображаемому объекту, но если оно подобно, такое изображение называется идеальным. Это возможно лишь при условии, что в оптической системе отсутствуют или устранены все аберрации, и что возможно пренебречь волновыми свойствами света. Оптическую систему, которая создаёт идеальное изображение, называют идеальной оптической системой. Идеальными можно приближённо считать центрированные системы, в которых изображение получается с помощью монохроматических и параксиальных пучков света.

Образование оптических изображений: а - мнимого изображения М' точки М в плоском зеркале; б - мнимого изображения М' точки М в выпуклом сферическом зеркале; в - мнимого изображения М' точки М и действительного изображения N' точки N в вогнутом сферическом зеркале: г - действительного А' В' и мнимого M'N' изображений предметов АВ и MN в собирающей линзе; д - мнимого изображения M'N' предмета MN в рассеивающей линзе; i, j - углы падения лучей; i', j' -углы отражения; С- центры сфер; F, F'-фокусы линз.

3. Тонкая линза — линза (в оптике), когда толщина самой линзы d (расстояние между наружныим точками сфер) мала по сравнению с радиусами кривизны сферических поверхностей d <<R1 и R2. В противном случае такие линзы называются толстыми.

Линзы входят в состав практически всех оптических устройств. Линзы (Рис.3) делятся на собирающие и рассеивающие.

тонкая линза

схема тонкой линзы

собирательные и рассевающие линзы

Основные определения тонкой линзы.

Главной оптической осью линзы (См. Рис.2) считается ось, прожодящая через центры кривизны её поверхностей. В тонкой линзе точки пересечения главной оптической оси с обеими поверхностями линзы сливаются в одну точку О.(Т.к. очень большие радиусы кривизны приближаются к плоскостям, то сферические поверхности теоретически сливаються в одну плоскость ). Эта точка называется оптическим центром линзы. Тонкая линза имеет одну главную плоскость, которая общая для двух сферических поверхностей и проходит через центр призмы и перпендикулярна к главной оптической оси. Все прямые, проходящие через оптический центр линзы, называются побочными оптическими осями линзы. Важным является то, что все лучи, идущие через оптический центр линзы, не преломляются.

Поток монохроматических параллельных лучей или пучков лучей с осями их узких конусов , нормалльных к сферической границе раздела (к главной плоскости, см.Рис.2), называют парксиальными (приосевыми) пучками. При этом, пройдя через неё сходятся в главном фокусе линзы F. Главные фокусы линзы лежат на главной оптической оси линзы. Точки, расположенные на главной оптической оси линзы с двух сторон оптического центра на равных расстояниях F2. (См. Рис.4), называются главными фокусами линзы . Плоскости, проходящие через главные фокусы F2 линзы и перпендикулярные к её главной оптической оси, называются фокальными плоскостями линзы .

Непараксиальные пучки не дают стигматических оптических изображений и после преломления становятся не гомоцентрическими.

Формула тонкой линзы.

где — расстояние от линзы до предмета; — расстояние от линзы до изображения; — главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей

4. Фокус оптической системы — точка, в которой пересекаются первоначально параллельные световые лучи после прохождения через собирающую оптическую систему (либо где пересекаются их продолжения, если система рассеивающая)

Фока́льная пло́скость в параксиальной оптике — плоскость, на которой расположены точки, в которых собираются попавшие в систему плоскопараллельные пучки лучей. В реальной оптике поверхность, обладающая такими свойствами, плоскостью, вообще говоря, не является. Аберрация связанная с несоответствием данной поверхности с плоскостью называется кривизной поля изображения.

Для тонких линз фокальной плоскостью является плоскость перпендикулярная главной оптической оси, проходящая через фокус.

главная оптическая ось