Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на билеты.docx
Скачиваний:
33
Добавлен:
19.12.2018
Размер:
2.36 Mб
Скачать

12)Зависимость излучательной способность абсолютного черного тела от частоты и длины волны. Закон смещения вина.

В 1893 году немецкий ученый Вильгельм Вин рассмотрел задачу об адиабатическом сжатии излучения в цилиндрическом сосуде с зеркальными стенками и подвижным зеркальным поршнем. При движении поршня энергия излучения единицы объема (плотность энергии) будет возрастать по двум причинам:

за счёт уменьшения объема (общая величина энергии постоянна);

за счёт работы, совершаемой поршнем против давления излучения.

Однако, в силу эффекта Доплера (увеличение частоты излучения, отраженного от движущегося поршня) движение поршня приводит к изменению частоты излучения. Окончательно Вин получил:

где и – постоянные, которые Вин не расшифровал.

Выражение (1.4.1) имеет сейчас лишь историческую ценность. Но Вин нашел зависимость ( – частота соответствующая максимальному значению абсолютно черного тела). Найдем максимум функции (1.4.1), то есть производную по ν и приравняем к нулю.

Тогда

Это и есть закон смещения Вина. Смещение частоты в зависимости от температуры хорошо иллюстрируется экспериментальными кривыми, изображенными на рис. 1.3.

Чаще закон смещения Вина записывают в виде , где постоянная Вина . (За работы по тепловому излучению Вин в 1910 году получил Нобелевскую премию).

13)Модель атома водорода по бору. Боровские орбиты. Спектр энергий электрона. Спектральные серии лаймана и бальмера.

1.Исходя из этих постулатов и используя планетарную модель строения атома, Н. Бор разработал количественную теорию атома водорода. Он рассчитал радиусы стационарных орбит электрона в атоме водорода и вычислил соответствующие им значения энергии.

Расчет радиусов орбит.' Электрон движется вокруг ядра в атоме водорода по круговой орбите под действием кулоновской силы, которая сообщает

ему центростремительное ускорение. По второму закону Ньютона

Центростремительное ускорение электрону сообщает кулоновская сила притяжения со стороны ядра Следовательно, или

Согласно III постулату Бора: отсюда

Из уравнений (20.1) и (20.2) получим

Откуда

выражение для радиусов разрешенных стационарных орбит электрона в атоме водорода. Здесь n — номер орбиты, радиус которой r, — электрическая постоянная, h — постоянная Планка, m — масса электрона, е — заряд электрона.

Мы видим, что радиусы стационарных устойчивых орбит возрастают пропорционально квадратам номеров орбит (рис. 20.3): и т.д. Если электрон в атоме водорода находится на одной из стационарных орбит, то атом обладает определенным значением энергии, определяемой энергией электрона:

(Знак "-" перед потенциальной энергией означает, что за принято то значение, которое соответствует ). Подставив в эту формулу значения и r из формул (20.2) и (20.3), получим:

Таким образом, энергия электрона, находящегося на n-й орбите,

(20.4)

Из этой формулы видно, что значения энергии атома водорода квантованы и, чем больше n, тем больше энергия Wn. Для наглядного представления возможных энергетических состояний атомов используются энергетические диаграммы, на которых каждое стационарное состояние атома отмечается горизонтальной линией, называемой энергетическим уровнем (рис. 20.4). Ниже всех на диаграмме располагается энергетический уровень, соответствующий основному состоянию (состояния с минимальной энергией). Энергетические уровни возбужденных состояний располагаются над основным уровнем на расстояниях, пропорциональных разности энергий возбужденного и основного состояний. Переходы атома из одного состояния в другое изображаются вертикальными линиями между соответствующими уровнями на диаграмме. Направление перехода обозначается стрелкой. При переходе электрона с k-й на n-ю орбиту излучается фотон с частотой

Рис. 20.4

Сравнивая это выражение с эмпирической формулой

(20.5)

видим, что постоянная Ридберга следовательно, в формуле (20.5) k — номер орбиты, с которой происходит переход электрона в атоме, n — номер орбиты, на которую переходит электрон.

2. Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам , находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты , при движении по которым момент количества движения электрона равен целому числу постоянных Планка: .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты Rn и энергии En находящегося на этой орбите электрона:

Здесь me — масса электрона, Z — количество протонов в ядре, ε0 — диэлектрическая постоянная, e — заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,2917720859(36)×10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты E0 = − 13.6 эВ представляет

3.

4. Серия Лаймана — спектральная серия в спектре атома водорода, названная в честь американского физика Теодора Лаймана , открывшего эту серию в 1906 году. Данная серия образуется при переходах электронов с возбуждённых энергетических уровней на первый в спектре излучения и с первого уровня на все остальные при поглощении. Переход со второго энергетического уровня на первый обозначается греческой буквой α, с 3-го на 1-й — β и т. д. Для обозначения самой серии используется латинская буква L. Таким образом, полное обозначение спектральной линии, возникающей при переходе электрона со второго уровня на первый — Lα (произносится Лайман альфа).

Формула Ридберга для серии Лаймана выглядит следующим образом:

Где n — главное квантовое число — натуральное число большее либо равное 2.

Серия Бальмера — спектральная серия в спектре атома водорода, названная в честь швейцарского физика Иоганна Бальмера , открывшего эту серию в 1885 году.

Данная серия образуется при переходах электронов с возбужденных энергетических уровней на второй в спектре излучения и со второго уровня на все вышележащие уровни при поглощении.

Переход с третьего энергетического уровня на второй обозначается греческой буквой α, с 4-го на 2-й — β и т. д. Для обозначения самой серии используется латинская буква H. Таким образом, полное обозначение спектральной линии, возникающей при переходе электрона с третьего уровня на второй — Hα (произносится Бальмер альфа).

Формула Ридберга для серии Бальмера выглядит следующим образом:

Где n — главное квантовое число — натуральное число, большее или равное 3.