Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все билеты по ксе.docx
Скачиваний:
13
Добавлен:
09.12.2018
Размер:
121.44 Кб
Скачать

11 Вопрос

Энтропия (от греч. — поворот, превращение) в естественных науках — мера порядка системы, состоящей из единого элемента. В частности, в статистической физике — мера вероятности осуществления конкретного макроскопического состояния; в теории информации — мера конкретизации какого-либо опыта (испытания), который должен иметь разные исходы, а значит и качество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

БОЛЬЦМАНА ПРИНЦИП - соотношение S - k lnW между энтропией S и термодинамической вероятностью W (k - постоянная Больцмана). На Больцмана принципе основано статистическое истолкование второго начала термодинамики: природные процессы стремятся перевести термодинамическую систему из состояний менее вероятных в состояния более вероятные (т. е. привести систему в равновесное состояние, для которого значения W и S максимальны).

12 Вопрос

Дискретность и непрерывность материи. Самое простое представление о поле дает сплошная среда, например вода, заполняющая некоторую область пространства (или же вообще все пространство). Эта среда может иметь в разных точках, например, различную плотность или температуру, по-разному двигаться. Именно конкретное физическое свойство среды, разное в разных точках и доступное для измерений, физически определяет поле. В связи с этим различают поле температур, поле скоростей, силовое поле и т. д В философском плане разделение мира на тела и частицы, с одной стороны, и сплошную среду, поле и пустое пространство - с другой, соответствует выделению двух крайних свойств мира - его дискретности и непрерывности .

Дискретность (или прерывность) означает - "зернистость", конечную делимость пространственно-временного строения и состояния предмета или объекта, его свойств и форм движения (скачки), тогда как непрерывность выражает единство , целостность и неделимость объекта, сам факт его устойчивого существования. Для непрерывного нет границ делимого. В математике этим философским категориям. соответствуют дискретное множество натуральных чисел и непрерывное множество (континуум) действительных чисел. Для точного пространственно-временного описания свойств сплошной среды (и поля) был разработан специальный раздел математики.

В рамках классической физики дискретные и непрерывные свойства мира первоначально выступают как противоположные друг другу, отдельные и независимые друг от друга, хотя в целом и дополняющие общее представление о мире. И только развитие концепции поля, главным образом для описания электромагнитных явлений, позволило понять их диалектическое единство. В современной квантовой теории это единство противоположностей дискретного и непрерывного нашло более глубокое физико-математическое обоснование в концепции корпускулярно-волнового дуализма.

После появления квантовой теории поля представление о взаимодействии существенно изменилось. Согласно данной теории любое поле является не непрерывным, а имеет дискретную структуру. Например, электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами - квантами электромагнитного поля, т. е. фотоны - переносчики этого поля. Аналогично другие виды взаимодействия возникают в результате обмена частиц квантами соответствующих полей. Например, в гравитационном взаимодействии, как предполагается, принимают участие гравитоны (их существование пока экспериментально не подтверждено).

ВОЛНОВЫЕ СВОЙСТВА СВЕТА

То, что свет обладает волновыми свойствами, было известно давно. Христиан Гюйгенс в 1690 г. опубликовал "Трактат о свете", в котором развивает волновую теорию света. Интересно, что Ньютон, который был знаком с этими работами, в своем трактате об оптике убеждает себя и других в том, что свет состоит из частиц – корпускул. Авторитет Ньютона какое-то время даже препятствовал признанию волновой теории света. Это тем более удивительно, что Ньютон не только слышал о работах Гука и Гюйгенса, но и сам сконструировал и изготовил прибор, на котором наблюдал явление интерференции, известное сегодня каждому школьнику под названием "Кольца Ньютона". Явления дифракции и интерференции просто и естественно объясняются в волновой теории. Ему же, Ньютону, пришлось изменить себе самому и прибегнуть к "измышлению гипотез" весьма туманного содержания, чтобы заставить корпускулы двигаться должным образом.

Наиболее известные опыты, приборы и устройства, в которых наиболее ярко проявляется волновая природа света.

1. "Кольца Ньютона".

2. Интерференция света при прохождении его через два отверстия.

3. Интерференция света при отражении от тонких пленок.

4. Дифракция света на узкой щели.

5. Дифракционная решетка.

Все эти опыты, приборы, устройства или явления хорошо известны, поэтому не будем на них останавливаться. Хочется напомнить только одну любопытную подробность, связанную с названием "пятна Пуассона". Пуассон был противником волновой теории. Рассматривая метод Френеля, он пришел к заключению, что если свет является волной, то в центре геометрической тени от непрозрачного диска должно быть светлое пятно. Считая, что вывод этот абсурден, он выдвинул его как убедительное возражение против волновой теории. Однако это абсурдное предсказание было экспериментально подтверждено Арагоном.

КОРПУСКУЛЯРНЫЕ СВ-ВА СВЕТА

С 1905 года науке известно, что свет не только является волной, но и потоком частиц – фотонов. Все началось с открытия фотоэффекта. Фотоэффект был открыт Герцем в 1887 г.

1888 – 1889 г. явление было экспериментально изучено Столетовым.

1898 г. Ленард и Томпсон установили, что частицы, которые испускаются под действием света, являются электронами.

Основная проблема, которую поставил перед учеными фотоэффект, заключалась в том, что энергия вырванных светом из вещества электронов не зависит от интенсивности падающего на вещество света. Она зависит только от его частоты. Классическая волновая теория не могла этот эффект объяснить.

1905 г. Эйнштейн дал теоретическое объяснение фотоэффекту, за что в 1921 г. получил Нобелевскую премию.

По предположению Эйнштейна свет состоит из фотонов, энергия которых зависит только от частоты и рассчитывается по формуле Планка:

E=hv=(h/2П)2Пv

Свет способен вырвать электрон из вещества, если у фотона для этого достаточно энергии. При этом не имеет значения количество фотонов, которые падают на освещенную поверхность. Следовательно интенсивность света не имеет значения для начала фотоэффекта.

При объяснении фотоэффекта Эйнштейн использовал известную гипотезу Планка. Планк в свое время предположил, что свет излучается порциями – квантами. Теперь Эйнштейн предположил, что свет, к тому же и поглощается порциями. Для объяснения фотоэффекта этого предположения было достаточно. Эйнштейн, тем не менее идет дальше. Он предполагает, что свет и распространяется порциями или фотонами. Для такого утверждения в тот момент не было никаких экспериментальных оснований.

Корпускулярно-волновой дуализм, как фундаментальное свойство природы

Корпускулярно-волновой дуализм – это свойство частиц проявлять как корпускулярные, так и волновые свойства в различных экспериментах. Существующий на сегодняшний день опыт и теория говорят, что корпускулярно-волновой дуализм присущ всем без исключения частицам материи, в том числе атомам и молекулам.