Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы Физиология ЦНС.doc
Скачиваний:
12
Добавлен:
01.12.2018
Размер:
3.49 Mб
Скачать

Билет 1

Нейроны и глиальные клетки: общая характеристика, разнообразие, функции. Серое и белое вещество мозга (на примере спинного мозга); образование миелиновых оболочек.

Нейроны

Нервная ткань состоит из нервных клеток — нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц. Нейрон — элементарная структурно-функциональная единица нервной ткани. Основные функции нейрона: генерация,

проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы построению и функции. Длина отростков у различных нейронов колеблется от нескольких микрометров до 1—1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества — миелина. Она образуется одним из типов нейроглиальных клеток — олигодендроцитами. По наличию или отсутствию миелиновой оболочки все во-

волокна делятся соответственно на мякотные (миелинизированые) и безмякотные (немиелинизированные). Последние погружены в тело специальной нейроглиальной клетки нейролеммоцита. Миелиновая оболочка имеет белый цвет, что позволило раз-

разделить вещество нервной системы на серое и белое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. Миелин покрывает не все волокно: примерно на расстоянии в 1 мм в нем имеются промежутки — перехваты Ранвье, участвующие в быстром проведении нервного импульса. Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому импульс идет от тела нейрона, всегда один и называется аксоном. Аксон практически не меняет диаметр на всем своем протяжении. У большинства нервных клеток это длинный отросток. Исключением являются нейроны чувствительных спинномозговых и черепных ганглиев, у которых аксон короче дендрита. Аксон на конце может ветвиться. В некоторых местах (миелинизированных аксонов — в перехватах Ранвье) от аксонов могут перпендикулярно отходить тонкие ответвления — коллатерали. Отросток нейрона, по которому импульс идет к телу клетки, — дендрит. Нейрон может иметь один или несколько дендритов. Дендриты отходят от тела клетки постепенно и ветвятся под острым углом. Скопления нервных волокон в ЦНС называются трактами, или путями. Они осуществляют проводящую функцию в различных отделах головного и спинного мозга и образуют там белое вещество. В периферической нервной системе отдельные нервные волокна собираются в пучки, окруженные соединительной тканью, в которой проходят также кровеносные и лимфатические сосуды. Такие пучки образуют нервы — скопления длинных отростков нейронов, покрытых общей оболочкой. Если информация по нерву идет от периферических чувствительных образований — рецепторов — в головной или спинной мозг, то такие нервы называются чувствительными, центростремительными или афферентными. Чувствительные нервы — нервы, состоящие из дендритов чувствительных нейронов, передающие возбуждение от органов чувств к ЦНС. Если информация по нерву идет из ЦНС к исполнительным органам (мышцам или железам), нерв называется центробежным, двигательным или эфферентным. Двигательные нервы — нервы, образованные аксонами двигательных нейронов, проводящие нервные импульсы от центра к рабочим органам (мышцам или железам). В смешанных нервах проходят как чувствительные, так и двигательные волокна. В том случае, когда нервные волокна подходят к какому-либо органу, обеспечивая его связь с ЦНС, принято говорить об иннервации данного органа волокном или нервом. Тела нейронов с короткими отростками по-разному расположены относительно друг друга. Иногда они образуют достаточно плотные скопления, которые называются нервными ганглиями, или узлами (если они находятся за пределами ЦНС, т. е. в периферической нервной системе), и ядрами (если они находятся в ЦНС). Нейроны могут образовывать кору — в этом случае они расположены слоями, причем в каждом слое находятся нейроны, сходные по форме и выполняющие определенную функцию (кора мозжечка, кора больших полушарий). Кроме того, в некоторых участках нервной системы (ретикулярная формация) нейроны расположены диффузно, не образуя плотных скоплений и представляя собой сетчатую структуру, пронизанную волокнами белого вещества. Передача сигнала от клетки к клетке осуществляется в особых образованиях — синапсах. Это специализированная структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо клетку (нервную, мышечную). Передача осуществляется с помощью особых веществ - медиаторов.

Разнообразие

Тела самых крупных нейронов достигают в диаметре 100—120 мкм (гигантские пирамиды Беца в коре больших полушарий), самые мелкие — 4—5 мкм (зернистые клетки коры мозжечка). По количеству отростков нейроны делятся на мультиполярные, биполярные, униполярные и псевдоуниполярные. Мультиполярные нейроны имеют один аксон и много дендритов, это большинство нейронов нервной системы. Биполярные имеют один аксон и один дендрит, униполярные — только аксон; они характерны для анализаторных систем. Из тела псевдоуниполярного нейрона выходит один отросток, который сразу после выхода делится на два, один из которых выполняет функцию дендрита, а другой аксона. Такие нейроны находятся в чувствительных ганглиях.

Функции

Функционально нейроны подразделяются на чувствительные, вставочные (релейные и интернейроны) и двигательные. Чувствительные нейроны — нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Двигательные нейроны — моторные нейроны, иннервирующие мышечные волокна. Кроме того, некоторые нейроны иннервируют железы. Такие нейроны вместе с двигательными называют исполнительными.

Часть вставочных нейронов (релейные, или переключательные, клетки) обеспечивает

связь между чувствительными и двигательными нейронами. Релейные клетки, как правило, весьма крупные, с длинным аксоном (тип Гольджи I). Другая часть вставочных нейронов имеет небольшой размер и относительно короткие аксоны (интернейроны, или тип Гольджи II). Их функция связана с управлением состояния релейных клеток.

Все перечисленные нейроны формируют совокупности — нервные цепи и сети, проводящие, обрабатывающие и запоминающие информацию. На концах отростков ней-

нейронов расположены нервные окончания (концевой аппарат нервного волокна). Соответственно функциональному разделению нейронов различают рецепторные, эффекторные и межнейронные окончания. Рецепторными называются окончания дендритов чувствительных нейронов, воспринимающие раздражение; эффекторными — окончания аксонов исполнительных нейронов, образующие синапсы на мышечном волокне или на железистой клетке; межнейронными — окончания аксонов вставочных и

чувствительных нейронов, образующие синапсы на других нейронах.

Глиальные клетки

В нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия.

А) Олигодендроциты (в т.ч. Шванновские клетки): электроизоляции нейронов; миелин – липидно-бел-ковый комплекс, придающий белый цвет скоплени-ям аксонов («белое в-во»); рассеянный склероз: на белки миелина развивается аутоиммунная реакция.

Б) Астроциты: механическая защита и слежение за составом межклеточной среды; образуют гема-то-энцефалический барьер (ГЭБ), задерживающий проникновение в мозг «посторонних» химических веществ (в т.ч. лекарственных препаратов).

В) микроглия: фагоциты нервной ткани.

Нейроглия выполняет защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-соленым обменом и т.п.

Миелинизация

Чем толще проводник-аксон, тем < его электрич. сопротивление и легче происходит запуск ПД. Это позволяет увеливать скорость за счет наращивания диаметра аксона. Рекорд - гигантский аксон кальмара (d=0.5-1 мм, V=10 м/с). «Радикальный» рост скорости проведения – за счет миеленизации аксонов, которая обеспечивается одним из типов глиальных клеток – Шванновскими клетками. Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану. Каждая Шванновская клетка, наматываясь на аксон, закрывает область около 1 мм. Между клет-ками – голые участки (перехваты Ранвье). Протяженность перехватов Ранвье = 1% от общей длины аксона. В итоге это приводит к росту скорости проведения ПД до 100-120 м/с. (Креветка – 200 м/с.).

Серое и белое вещество (на примере спинного мозга)

В продольном направлении СМ разделен на 31 сегмент: 8 шейных, 12 грудных, 5 поясничных, 6 крестцово-копчиковых. В соответствии с этим наше тело (от шеи до копчика) разделено на 31 «этаж». Каждый сегмент СМ работает со своим этажом тела + обменивается сигналами с головным мозгом. Шейные сегменты управляют шеей, руками и дыхательными мышцами; грудные – областью грудной клетки и брюшной полости; поясничные – ногами; крестцово-копчиковые – областью таза.

В центре – серое вещество (тела нейронов, дендриты): обработка информации. Вокруг серого – белое вещество (аксоны) – обмен информацией с головным мозгом. Серое вещество делится на задние, боковые и передние рога, а также промежуточное ядро.

В задние рога входят задние корешки; из передних и боковых рогов выходят передние корешки. Передние и задние корешки сливаются в спинномозговой нерв. На задних корешках находятся спинномозговые ганглии, которые содержат сенсорные нейроны.

Нейроны спинномозгового ганглия воспринимают сенсорные стимулы и через задние корешки передают сигналы в задний рог серого вещества нейроны заднего рога осуществляют первичную обработку сенсорных сигналов (не пропускают слабые и/или постоянно действующие сигналы). Нейроны промежуточного ядра сопоставляют сенсорные сигналы и команды головного мозга; в результате возможен запуск реакции

дальнейшая передача сигнала в передний рог означает запуск двигательной реакции (возможен произвольный контроль). Дальнейшая передача сигнала в боковой рог означает запуск вегетативной реакции (нет произвольного контроля)

при очень сильной боли головной мозг «не успевает вмешаться»; с другой стороны, только влияний головного мозга достаточно для запуска сокращений мышц (произвольное движение).

Мотонейроны. Нервно-мышечные синапсы (НМС): строение и проведение сигнала; роль ацетилхолина; запуск мышечного сокращения; нарушение работы НМС

Мотонейрон

Двигательный нейрон (мотонейрон): передает сигнал на клетки скелетных мышц, запуская их сокращение. Аксон мотонейрона образует синапс с поперечно-полосатыми клетками скелетных мышц.

Мотонейроны (МН), как известно, находятся в передних рогах серого вещества спинного мозга, а также в двигательных ядрах черепных нервов: III, IV, VI (глазодвигательный, блоковый, отводящий) движения глаз (6 мышц); V (тройничный) – жевательные мышцы; VII (лицевой) – мигание, мимические мышцы; IX (языкоглоточный) – мышцы глотки; Х (блуждающий) – мышцы пищевода и гортани; XI (добавочный) – часть мышц шеи и плечевого пояса; XII (подъязычный) – язык.

Один МН иннервирует разное число мышечных волокон в зависимости от «тонкости» движений (глазодвигательные мышцы, язык, мышцы пальцев – по 5-50 клеток; мышцы туловища – по 2-5 тыс. клеток; мышцы конечностей – по несколько сотен клеток.

Совокупность мышечных волокон, управляемых одним МН, называется «двигательной единицей». В ответ на приход ПД все клетки двигательной единицы сокращаются примерно на 200 мс.

Каждая мышечная клетка управляется только одним МН (только один нервно-мышечный синапс).

Синапс

Передача сигнала от клетки к клетке в нервной системе происходит в особых образованиях – синапсах. Представление о синапсе сформулировано Чарльзом Шеррингтоном (Ch. Sherrington) в 1897 г. на основе изучения нервно-мышечных контактов.

Нервно-мышечный синапс

Нервно-мышечные синапсы в десятки раз крупнее центральных; количество выделяемого Ацх так велико, что ВПСП достигает 50 мВ и «с гарантией» запускает ПД на мембране мышечной клетки. Постсинаптическая мембрана мышечной клетки складчатая, что увеличивает кол-во никотиновых рецепторов; от поверхности клетки внутрь цитоплазмы идут особые каналы – Т-трубочки.

1. Приход ПД приводит к экзоцитозу Ацх и активации никотиновых рецепторов.

2. На мембране мышечной клетки возникает ПД, распространяющийся внутрь Т-трубочек.

3. ПД приводит к выбросу из каналов ЭПС, контактирующих с Т-трубочкой, ионов Са2+.

4. Са2+ запускает взаимное скольжение нитей актина и миозина, приводящее к сокращению мышечной клетки.

Курарин – яд южно-американского кустарника; антагонист Ацх: мешает ему присоединяться к никотино-вому рецептору; основное действие курарин оказывает на нервно-мышечные синапсы (паралич, остановка дыхания). Используется аборигенами для охоты; в клинике – для выключения нервно-мышечных синапсов и сокращений мышц во время длительных хирургических операций (при этом пациента, естественно, подключают к аппарату искусственного дыхания).

Никотин при табакокурении практически не влияет на нервно-мышечные синапсы (иначе были бы судороги, как у насекомых, поедающих табак).

Гипоталамус и его связь с вегетативной нервной системой; участие в реакции на стресс и терморегуляции (терморецепторы, лихорадка, гибернация)

Промежуточный мозг: гипофиз, эпифиз (эндокринные железы), таламус, гипоталамус.

Гипоталамус – является главным центром эндокринной и вегетативной регуляции, а также главным центром биологических потребностей (и связанных с ними эмоций).

Здесь – центры голода и жажды, страха и агрессии, половой и родительской мотивации («центр бессознательного»).

Таламус – фильтрует информацию, поднимающуюся в кору

больших полушарий, пропуская сильные и новые сигналы (непроизвольное внимание), а также сигналы, связанные с текущей деятельностью коры («по заказу» коры, произвольное внимание).

зрительного и слухового анализаторов.

Гипоталамус, представляющий собой вентральную часть промежуточного мозга, располагается кпереди ножек мозга. Он включает ряд структур, которые имеют различное строение: сосцевидные тела, серый бугор, зрительный перекрест.

Сосцевидные тела располагаются кпереди от заднего продырявленного вещества среднего мозга и образованы серым веществом, покрытым тонким слоем белого вещества. Между сосцевидными телами сзади и зрительным перекрестом спереди находится серый бугор, который по бокам ограничен зрительными трактами. Серый бугор представляет собой тонкую пластинку серого вещества на дне третьего желудочка, которая вытянута книзу и кпереди и образует воронку. Конец воронки переходит в гипофиз — железу внутренней секреции, расположенную в гипофизарнои ямке костного турецкого седла. Зрительный перекрест, находящийся впереди серого бугра, продолжается кпереди в зрительные нервы, кзади и латерально — в зрительные тракты, которые достигают правого и левого латеральных коленчатых тел. В сером веществе гипоталамуса располагаются скопления нервных клеток. Эти скопления получили название ядер. В передней области гипоталамуса находятся супраоптическое{надзрительное) и паравентрикулярное{околожелудочковое) ядра. В задней части гипоталамуса наиболее крупными ядрами являются медиальное и латеральное ядра в каждом сосцевидном теле, заднее гипоталамическое ядро. В сером бугре и околобугристой области располагаются серобугорные ядра, ядро воронки и другие. Ядра гипоталамуса имеют сложную систему связей с другими отделами мозга и с гипофизом, через которые гипоталамус влияет на многие вегетативные функции организма. Гипоталамус является также центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, координирует нервные и гормональные механизмы функций внутренних органов. В гипоталамусе имеются нейроны обычного типа и нейро-секреторные клетки, они трансформируют нервный импульс в нейрогормональный. Гипоталамус образует с гипофизом единый функциональный комплекс — гипоталамо-гипофизарную систему, в которой гипоталамус играет регулирующую роль, а в гипофизе — эффекторную. Таким образом, гипоталамус является связующим звеном между нервной системой и эндокринным аппаратом. В среднем гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, солевой состав, наличие гормонов). Задняя область гипоталамуса функционально связана с терморегуляцией и оборонительным поведением (латеральные и медиальные ядра сосцевидных тел, заднее гипоталамическое ядро). В других частях гипоталамуса расположены центры, связанные с половым, родительским, пищевым и другими типами поведения. В нейронном отношении ядра гипоталамуса составляют

переднюю (верхнюю) часть ретикулярной формации ствола мозга.

В гипоталамусе, являющемся высшим подкорковым центром вегетативной нервной системы, расположены ядра, обеспечивающие постоянство внутренней среды организма, регуляции белкового, углеводного, жирового и водно-солевого обмена, терморегуляции (теплового режима). В передних отделах гипоталамуса расположены парасимпатические центры, раздражение которых вызывает усиление моторики кишки, секреции желез органов пищеварения, замедление сокращений сердца. В задних отделах гипоталамуса находятся симпатические центры, при активации которых учащается и усиливается сердцебиение, суживаются кровеносные сосуды, повышается температура тела.

В передней части гипоталамуса (преоптическая область) – нейроны-терморецепторы, постоянно измеряют температуру крови, 80% из них реагируют на перегрев, 20% – на охлаждение.

Дополнительно (но в меньшей степени) учитываются сигналы от тепловых и холодовых рецепторов кожи.

При перегреве – расширение сосудов кожи, потоотделение, поведенческие реакции (если перегрев осознается).

При переохлаждении – сужение сосудов кожи, дрожь и пилоэрекция, поведенчес-кие реакции (теплопотеря осознается).

При заболеваниях и воспалении ряд веществ, выделяемых иммунной системой, запускает синтез простагландинов (ПГ) в гипоталамусе;

ПГ влияют на преоптич. область и температура растёт (лихорадка), что создает более благоприятные условия для включения защитных механизмов (активация фагоцитов, ускорение синтеза антител и т.п.).

Закаливание – тренировка систем терморегуляции, действительно снижает вероятность простудных заболеваний.

У животных – особые органы теплоотдачи (хвосты, уши, плавники), а также испарение с поверхности дыхательных путей.

Существуют пептиды-терморегу-ляторы (киоторфин: Tyr-Arg ); они же – важные факторы, запускающие зимнюю спячку (гибернацию). Замедление обмена веществ за счет снижения температуры тела – важная практическая задача (уменьшение риска осложнений при хирургических вмешательствах).