Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копия Титул реферат.doc
Скачиваний:
6
Добавлен:
25.11.2018
Размер:
169.47 Кб
Скачать

Глава 1

Для определения основного понятия "робот" следует уяснить главные критерии оценки его возможностей, так как робот по своей концепции возник как устройство, призванное заменить труд человека в самых разнообразных видах и сферах, приложения, оценка его возможностей должна исходить из трех категорий способностей, присущих живому существу, в частности человеку, - физических, функциональных и интеллектуальных. Робот - это трехмерная машина, имеющая три измерения, соответствующие пространству живого существа. Вычислительные и другие информационные машины, а также машины грузоподъемного, строительного, транспортного вида двумерны. Стационарные машины общего применения, существовавшие до сих пор, можно считать одномерными, имеющими только физические возможности. Как же определяется понятие "робот"?

В широком понимании робот может быть определен как техническая система, способная замещать человека или помогать ему в выполнении различных задач. Однако и до сих пор отсутствует строгая и общепринятая формулировка Различные источники дают разное толкование этого понятия. От других систем, предназначенных для обработки поступающей извне информации и получения управляющих воздействий (например, систем автоматического управления технологическими процессами), роботов отличает антропоморфизм ...".

Профессор Токийского университета, доктор Сигэру Ватаата предлагает считать роботом устройство, способное самостоятельно перемещаться в пространстве, справляться с задачами анализа сцен и распознавания образов, обладающее числом степеней подвижности, умеющее анализировать обстановку с помощью обратной связи, а также прогнозировать ситуации, опираясь на собственный опыт и доступную информацию.

Профессор Токийского технологического института доктор Сэйко Мори считает, что роботом может быть названо устройство при условии, что оно обладает универсальностью, мобильностью, представляет собой одно физическое тело, работает автоматически, полностью подчиняется человеку, а также способно к элементарной интеллектуальной деятельности. При этом универсальность, мобильность, индивидуальность и автоматизм - все эти качества являются неотъемлемыми признаками всех роботов без исключения.

Известный французский специалист Филипп Куафе напоминает, что робот - это управляемая машина, обладающая следующими двумя свойствами: 1) универсальными возможностями, т.е. способностью выполнять различные механические действия в реальном пространстве, для чего роботу необходимо иметь механическую структуру с изменяемой геометрией звеньев, и 2) адаптивностью к внешней среде, т.е. способностью самостоятельно изменять свое поведение в зависимости от изменений ее состояния.

Еще дальше по пути конкретизации понятия идет профессор М. Щпрингер из Университета Куин Мэри, согласно определению которого устройство, чтобы называться роботом, должно обладать минимальным набором свойств и возможностей, таких как 1) наличие механической руки и захвата; 2) умение самостоятельно передвигаться и самостоятельно управлять своими действиями; 3) наличие исполнительной системы и системы управления, которые в совокупности обеспечивают реализацию предыдущих свойств; 4) наличие компьютера, способного запоминать программы управления отработкой поступающих извне приказов, а также программ, реализующих решения, которые принимает сам робот, исходя из набора некоторых заранее определенных альтернатив; 5) наличие устройств и датчиков, способных определять касание роботом каких-либо внешних предметов, измерять степень гладкости поверхности, твердость материала, местоположение заданного предмета, его массу, теплопроводность, температуру, степень близости этого предмета, определять его форму и размеры, характерные внешние признаки, цвет, расстояние, запах, находить местоположение "рук и ног" робота, а также анализировать звуковые сигналы.

Следует привести еще одно определение понятия "робот", полученное путем статистического анализа ответа на вопрос: "Что такое робот, чем он отличается от машин и автоматических систем?", который задавался 156 экспертам, специализирующимся в различных областях науки и техники. Результатом экспертизы явилось следующее определение: "Робот представляет собой подвижную компактную систему, отличительными признаками которой являются чувствительные элементы, манипуляторы и, самое главное, некоторая степень искусственного интеллекта. При этом искусственный интеллект отождествляется главным образом со способностью к обучению и соответственно к изменению поведения".

При всей многочисленности и разнообразии формулировок попытаемся выделить заложенные в них наиболее характерные отличительные признаки роботов, к которым, пожалуй, следует отнести:

1) автономность, под которой понимается способность самостоятельного выполнения действий или производственных операций, сообразуясь лишь с программным алгоритмом либо с целеуказательной командой и изменяющимися условиями внешней среды;

2) универсальность, понимаемая как способность выполнять самые различные действия или производственные операции и легко переходить с одного вида действий на другой;

3) автоматичность, т.е. способность выполнять достаточно сложные и завершенные действия или производственные циклы без непосредственного вмешательства человека-оператора;

4) антропоморфизм, понимаемый в широком смысле как наделение робота способностями, присущими человеку: физическими (силовыми), функциональными (двигательными) и интеллектуальными (сходство робота с человеком, что совершенно необязательно и может использоваться лишь в специальных целях;

5) адаптивность, т.е. способность к целенаправленному изменению своего поведения под влиянием изменений внешних условий и к обучению в процессе взаимодействия с внешней средой (гибкость). Способность к адаптации и обучению реализуется путем наделения робота теми или иными средствами обратной связи: осязанием, зрением, слухом, обонянием, запоминанием и т. п. Выделенные в наиболее общем виде без излишней детализации эти пять отличительных признаков достаточно полно определяют способности и возможности робота как технической системы. При этом три первых являются совершенно неотъемлемыми признаками любого робота, а два последующих - четвертый и пятый - в той или иной мере могут быть присущи наиболее совершенным роботам. Таким образом, может быть дано достаточно общее и сжатое определение класса машин, именуемых роботами.

Робот - это автономно функционирующая универсальная автоматическая машина, предназначенная для воспроизведения физических, двигательных и умственных функций человека, наделенная способностью к адаптации и обучению в процессе активного взаимодействия с окружающей средой.

Робот - хороший пример того, как сумма ранее известных составных частей (манипуляторов, ЭВМ, сенсорики) дает новое качество - принципиально новый тип технического устройства, обладающего в достаточно развитом варианте искусственным интеллектом, искусственными органами чувств (сенсорика), способностью воспринимать окружающую среду и активно воздействовать на нее, обучаясь и совершенствуясь в ходе этого процесса Роботов, а тем более промышленных, полностью соответствующих вышеприведенному определению, пока еще нет; широко применяемые роботы не обладают устройствами типа органов чувств человека и способностью мыслить, а подобные разработки пока не вышли из стен научных лабораторий и не получили широкого применения. Однако наука и техника делают уверенные шаги по пути решения одной из фундаментальных проблем робототехники - создания чувствующих и мыслящих роботов.

Этапы развития робототехники.

Первый исторический этап движения человечества по пути создания роботов характеризуется обилием мифов и легенд о механических существах, а также созданием первых довольно совершенных для своего времени человекоподобных автоматов - андроидов, предназначенных главным образом для культовых и зрелищных целей.

Второй этап. В различных регионах мира продолжает развиваться процесс разработки и создания различных автоматических устройств и человекоподобных механизмов - андроидов, отдельные образцы которых достигли высокой степени совершенства, служили эталоном высочайшего мастерства, продуктом самых совершенных технологий и научно-технических достижений своего времени.

В XIII в. заподно-европейские мастера сконструировали автоматические устройства: Р. Бэкон - модель "говорящей головы", А. Магнус - "железного человека". Примерно в 1500 году Леонардо да Винчи строит для Людовика XII механического, льва, который, когда его звали, приближался к королю, останавливался и почтительно поднимался на задние лапы.

К числу наиболее знаменитых создателей механических фигур средних веков относился французский механик Жак де Вокансон (1709-1782). Его "Порхающая утка", получившая наибольшую известность и сохранившаяся до наших дней, вытягивала шею, чтобы взять зерно из руки, проглатывала и переваривала его, пила, барахталась в воде, крякала, ее движения в точности имитировали движения живой утки. Особенно гордился Вокансон тем, что крылья утки были так точно воспроизведены, что к их устройству не смог бы придраться ни один анатом. Среди других моделей Вокансона получили известность "Пианист", который, играя на фортепиано, поднимал голову и имитировал дыхание, а также "Игрок, на флейте", который еще и пел, аккомпанируя себе и отбивая такт ногой. Вокансон мечтал построить модель человека с сердцем, артериями и венами, но смерть помешала достижению этой цели.

Современники Вокансона швейцарские часовщики Пьер Жаке-Дроз (1721-1790) и его сын Анри Жаке-Дроз (1752-1791) достигли высокого совершенства в создании автоматов - андроидов, некоторые из них сохранились до наших дней. Кстати, от имени Анри Дроза и произошло словосочетание "андроид". Образцом высочайшего технического мастерства может служить созданный Дрозом-отцом андроид "Писец", сидящий за столом и аккуратным почерком выписывающий буквы и слова, плавно покачивающий головой и опускающий веки в такт движению руки. "Писец" мог быть запрограммирован на написание любого текста, состоящего не более чем из 40 букв, однако предпочтение чаще всего отдавалось знаменитому изречению Рене Декарта: "Cogito, ergo sum", что означает "Я мыслю, следовательно, существую". Пьер Жаке-Дроз достиг такого совершенства в создании автоматов, что однажды в Испании был схвачен инквизицией по обвинению в колдовстве. Созданная Пьером и Анри Дрозами "Девушка, играющая на клавесине", по восторженным описаниям современников, играет, шевелит губами, грудь ее поднимается и опускается при "дыхании", она смотрит на клавиши, в ноты, а иногда бросает взгляд на публику, по окончании игры встает и кланяется публике.

Свою лепту в создание подобных механизмов внесли и русские мастеровые. Так, знаменитый механик-самоучка И.П. Кулибин (1735-1818) в течение 3-х лет построил "Яичную фигуру" - универсальные часы, которые давали театрализованное представление в музыкальном сопровождении. Часовой механизм служил не только по своему прямому назначению, но и для автоматического включения в действие других механизмов, с помощью которых осуществлялись бой часов, движение фигурок и исполнение музыкальных мелодий.

Наряду с непосредственным натурным созданием различных автоматических устройств, воспроизводивших функции живых существ, в средние века довольно интенсивно закладывались основы и получили развитие соответствующие научные направления. Попытки установить соответствие между "механизмами и отдельными органами человека можно обнаружить еще в тетрадях Леонардо да Винчи (1452-1519). А знаменитый французский математик и философ Рене Декарт (1596- сложные машины; говорить то же самое и было небезопасно. В XVI - XVII вв. на стыке физиологии и механики возникает новое научное направление, получившее название ятромеханики (от гр. i р т о е - врач). Его выдающимся представителем был Дж. А. Бо-релли (1608-1679), врач и механик, профессор Мессинского университета, работа которого "О движении животных" была издана в Риме в 1680-1681 гг. посмертно. В ней на основе механических аналогий рассматривается работа мускулов сердца, кровообращения и других органов животных и человека, строится учение о законах их движения и функционирования, исходя из принципов механики. Учение Борелли развивалось и в XVIII в., в частности, Леонард Эйлер (1707-1783) и Даниил Бернулли (1700-1782) в своих первых работах, выполненных в стенах Петербургской Академии наук, рассматривали ряд вопросов тока крови е организме и движения мускулов, прибегая к механическим аналогиям. По существу, ятромеханика заложила основы современных научных направлений - биомеханики и бионики, играющих важную роль

в развитии робототехники.

На рубеже XVIII и XIX вв. в трудах Л. Карно, Г. Монжа, X. Ланца и А. Бетанкура, О. Борньи, Ж. Ашетта, Ж. Кристиана возникает наука о машинах. В 1841 г. Р. Виллис определил понятие механизма, и с этого времени к машине начинают подходить как к объекту, требующему научного исследования.

Начало новому этапу в исследовании машин и механизмов положил российский математик, академик Петербургской Академии наук П.Л.Че-бышев (1821-1894), увязав вопросы структуры и синтеза механизмов в единое учение о построении механизмов на основе математических методов. В опубликованной им в 1853 г. работе "Теория механизмов, известных под названием параллелограммов" задачи теории механизмов были впервые описаны на языке математики.

Английский математик и логик Джордж Буль (1815-1864), разработал основы математической логики и создал так называемую Булеву алгебру, которая в дальнейшем легла в основу реализации всех выполняемых современными ЭВМ вычислительных и логических операций. Основная работа Д. Буля "Исследование законов мысли" была опубликована в 1854 г.

Промышленная революция, связанная с переходом от ручного производства к машинному и начавшаяся во второй половине XVIII столетия, активизирует изобретатвлей и переориентирует их творческие усилия на создание новых машин и устройств, совершенствование промышленных технологий. Именно в этот период начали закладываться основы промышленной автоматики, особенно в текстильной промышленности. Ж. Вокансон строил не только автоматы-андроиды, но и автоматические ткацкие станки. Еще в 20-е гг. XVIII в. Бушон и Фалькон из Лиона спроектировали ткацкие станки для производства шелковой ткани с рисунком, которые частично управлялись, выражаясь современным языком, с помощью перфокарт или перфолент. Впоследствии эти станки были усовершенствованы Вокансоном и французским изобретателем Жозвфом Мари Жаккардом (1752-1834), а в 1805 г. Жаккард создает автоматический станок, на котором с помощью перфокарт можно производить ткани с заранее запрограммированным рисунком. Только во Франции в течение 7 лет были введены в действие 10 тыс. таких станков.

Создание программируемых ткацких автоматов Жаккарда явилось одним из важнейших событий, определивших дальнейший технический прогресс промышленности и послуживших толчком к развитию робототехники. Другим не. менее важным событием стало создание первой вычислительной машины в почти современном значении этого слова. На основе способа программирования, примененного Жаккардом, идею вычислительной машины высказал, а затем развил выдающийся английский математик, экономист и механик Чарльз Бэббидж (1792-1871). Свыше 37 лет он работал над воплощением своей идеи. В 1823 г. им была построена дифференцирующая машина и начата работа над более сложной. Разработанная в результате аналитическая машина по своим структурным особенностям была уже компьютером в современном понимании, имела почти все те же функциональные блоки, из которых состоят современные ЭВМ, а ввод данных осуществлялся с помощью перфокарт. Несмотря на то, что эта машина не была построена из-за ограниченных возможностей техники того времени, она по своим структурным особенностям на целое поколение предопределила направление развития вычислительной техники, а ее создатель Ч. Бэббидж вошел в историю вычислительной техники как "отец вычислительной машины".

Второй исторический этап развития робототехники характеризуется, с одной стороны, расцветом высочайшего технического искусства мастеров при создании сложных автоматических устройств, воспроизводящих функции животных и человека; с другой - началом разработки и внедрения в развивающееся промышленное производство весьма эффективных технологических устройств и станков-автоматов. Одновременно в этот период начинают формироваться соответствующие научные направления, заявляет о себе вычислительная техника.

Третий этап. На базе возросших научных и технических возможностей своего времени растет реализация потребностей общества и производства в различных автоматических устройствах. При этом намечается более явственный прогресс в приближении их к тому виду, который характерен для современных робототехнических устройств.

Роль своеобразного катализатора процесса берут на себя литература и искусство, многократно усиливая интерес общества к проблеме робототехники. Именно в этот период появляется много высокохудожественных научно-фантастических произведений литературы, ставится немало комиксов, мультфильмов и полнометражных кинолент, в которых андроиды, роботы, фантомы и иные творения человеческого воображения играют ведущие роли.

Само понятие "робот" приходит из художественной литературы. Впервые его употребил как производное от чешского слова "robota" - барщина, принудительный труд, в своей пьесе "R. U. R." (Rossem's Universal Robots - "Россумские универсальные роботы") знаменитый чешский писатель К. Чапек (1890-1938). В пьесе, поставленной 21 января 1921 г. в Пражском национальном театре, рассказывается о некоем Россуме, основателе фабрики, на которой биологическим путем выращивались роботы, отличавшиеся чрезвычайно высокой работоспособностью.

И хотя эти создания сегодня получили бы скорее название "андроиды", чем "роботы" (которые, как теперь принято считать, должны быть механическими), употребление слова "робот" стало повсеместным. "Роботы - это люди ... они механически совершеннее нас, они обладают невероятно сильным интеллектом, но у них нет души", - так определяет понятие "робот" один из персонажей пьесы.

Роботы не чувствуют боли, не испытывают человеческих чувств и переживаний. Они созданы людьми только для выполнения тяжелой и опасной работы и в этом смысле превосходят людей по ловкости и физической силе. В обществе им отводится роль чернорабочих и солдат. Предприимчивые дельцы в погоне за прибылью налаживают массовое производство роботов, сами же люди перестают трудиться, и, по выражению одного из героев пьесы, наступает "сплошная сумасшедшая оргия". В конце концов роботы от "ужаса и страданий обретают душу", прозревают и восстают. "Власть человека пала. Захватив комбинат, мы стали владыками всего ... Наступила новая эра! Власть роботов!". Таков исход пьесы.

Таким образом, К. Чапек не просто создал литературное произведение, но поставил и рассмотрел в художественной форме ряд фундаментальных вопросов робототехники - способов создания роботов, основные их характеристики, размеры производства и области использования, социально-психологические аспекты взаимоотношения роботов и людей, самовоспроизведение роботов.

Пожалуй, наиболее значительное место тема робототехники занимает в творчестве другого замечательного писателя-фантаста, американского ученого и популяризатора науки Айзека Азимова. В одном из своих рассказов, объединенных общим циклом "Я робот", А. Азимов в 1942 г. попытался впервые сформулировать основные принципы поведения роботов и взаимодействия их с человеком, исходя из категорий добра и гуманности. Эти принципы, названные тремя законами робототехники, гласят:

1. Робот не может причинить вред человеку или своим бездействием способствовать нанесению ему вреда

2. Он должен исполнять приказы человека, кроме тех, которые противоречат первому закону.

3. Робот должен обеспечивать собственную безопасность, кроме тех случаев, когда это противоречит первому и второму законам.

Один из пионеров промышленной робототехники, основатель и президент робототехнической фирмы "Unimation", признаваемый "отцом современной промышленной робототехники", Джозеф Ф. Энгель-бергер считает, что три закона робототехники А. Азимова являются теми стандартами, которым должны следовать специалисты при создании современных роботов. Фантастические идеи и образы писателей в значительной мере предвосхитили тенденции научно-технического прогресса, а новое понятие "робот" стало в дальнейшем играть важную роль не только в литературе и искусстве, но и в науке, технике, производстве.

Благодаря всеобщему интересу к роботам, изобретателям и талантливым умельцам удается находить источники финансирования, разрабатывать и создавать оригинальные конструкции андроидов. Так, спустя 7 лет после премьеры "R. U. R." американский инженер Дж. Уэнсли сконструировал управляемый голосом робот "Мистер Телевокс", имевший внешее сходство с человеком, способный выполнять элементарные движения по команде, подаваемой голосом, и ставший экспонатом Всемирной выставки в Нью-Йорке. Выставку Британской ассоциации инженеров по моделированию в 1928 г. "открыл" робот по имени "Эрик", обратившийся к собравшимся с небольшой речью. В том же году под руководством доктора Нисимура Макота создается первый японский робот, названный "Естествоиспытателем" и способный с помощью электропривода манипулировать руками и головой. Впоследствии этот андроид стали считать родоначальником роботостроения в Японии.

Первый отечественный робот-андроид В2М был создан в 1936 г. одаренным московским школьником Вадимом Мацкевичем и в 1937 г. был удостоен диплома Всемирной выставки в Париже. Ныне В.В Мац-кевич - кандидат технических наук, автор многих печатных трудов, в частности, увлекательной научно-популярной книги "Занимательная анатомия роботов", вышедшей в издательстве "Радио и связь" уже вторым изданием (1988 г.).

Однако все эти оригинальные устройства, являясь прорывом в сфере новой техники, яркой демонстрацией творческих возможностей человека, имели крайне ограниченное практическое применение. Решение технических проблем, связанных с использованием роботов в производственных процессах и научных исследованиях, было по существу нетронутым. Более того, оставалось совершенно неясным, какие задачи могут решать робототехнические устройства в промышленности.

Если обратиться к роботам как к программно-управляемым многоцелевым автоматам манипуляционного типа, предназначенным для использования в промышленности или научных исследованиях, то одним из самых первых промышленных манипуляторов был поворотный механизм с захватным устройством для удаления заготовок из печи, разработанный в США Бэббитом в 1892 г. Дальнейшее усовершенствование этого устройства приводит к появлению предшественников современных роботов. Ими оказались интенсивно разрабатываемые в 1940-1950 гг., особенно в США, Франции и ФРГ, копирующие дистанционные манипуляторы для работы с опасными радиоактивными материалами. Одним из первых копирующих манипуляторов такого типа для обслуживания атомных реакторов, разработанный в США под руководством Р. Герца, благодаря силовому очувствлению, позволял использовать в качестве обратной связи как визуальную, так и силовую информацию, что значительно улучшало процесс управления и расширяло функциональные возможности устройства

Появление таких манипуляторов сыграло важную роль в последующем развитии манипуляционных систем, передаточных механизмов, систем очувствления и аппаратных средств робототехники. Среди созданных в то время манипуляторов особую известность получили копирующие манипуляторы, разработанные Государственным научно-исследовательским институтом штата Орегон (США); предложенные им конструкции и принципы управления до сих пор находят применение во многих моделях роботов. И все же более прямыми предшественниками современных роботов можно считать программируемые краскораспы-лительные машины, разработанные в 1930-1940 гг. в США, например, машины Лолларда и Розелунда, которые программировались путем записи сигнала от рычажного механизма, перемещаемого по заданной траектории.

Возросший экономический потенциал и потребности в современных видах вооружения ведущих промышленных стран в первой половине XX в. дают мощный импульс развитию науки и научно-технических направлений, без которых возникновение и прогресс современной робототехники стали бы невозможными. Речь идет прежде всего о вычислительной технике и кибернетике.

В 1936-1937 гг. английский математик Алан Мотисон Тьюринг (1912-1954) вводит концепцию "абстрактной вычислительной машины", ныне называемой машиной Тьюринга, способной с помощью простейших операций считывания и сдвига выполнять вычисления произвольной сложности и ставшей прообразом появившихся в конце 1940-х гг. универсальных вычислительных машин. Усилиями ряда талантливых ученых (Дж. фон Нейман, Г. Уолтер, У.Р. Эшби, К. Шеннон и др.) на основе изучения аналогий между нервной системой человека, вычислительными машинами и системами автоматического регулирования развивается теория алгоритмов, ставшая одним из теоретических истоков вычислительной математики, а затем кибернетики и робототехники.

На основе синтеза теории информационных процессов, вычислительной техники и функционально-вычислительного подхода создается кибернетика, определяемая как наука об управлении сложными динамическими системами (акад. А.И. Берг). Ее "отцами" называют выдающихся американских ученых - математика Норберта Винера (1894-1964) и нейрофизиолога Уоррена Мак-Каллока (1898-1969), а датой официального рождения считается 1948 г., когда вышла в свет книга Н. Винера "Кибернетика, или управление и связь в животном и машине".

Логическим завершением периода формирования теоретических основ вычислительной техники стали работы выдающегося американского математика, одного из основоположников кибернетики Джона фон Неймана (1903-1957), именно ему принадлежит идея записи в память ЭВМ программы решения какой-либо задачи. Благодаря принципу хранения программ, вычислительные машины становятся универсальными. Первыми компьютерами, в которых был реализован неймановский принцип, были созданные в США электромеханический вычислительный калькулятор последовательного действия на электромагнитных релейных схемах Ховарда Эйкена (1944 г.) и первая действительно электронная вычислительная машина "ENIAC" (1947 г.), разработанная по контракту с Пентагоном в Пенеильванском университете под руководством Дж. Проспера Эккерта и Дж. Морли, основавших впоследствии знаменитую фирму IBM.

Не менее важное значение для развития вычислительной техники, кибернетики и робототехники имела другая работа Дж. фон Неймана -"Общая и логическая теория кибернетических автоматов", опубликованная в 1951 г. и посвященная принципам построения управляющих и вычислительных автоматических устройств. В своих трудах и лекциях он дал общую схему самовоспроизводящегося автомата - "машинной мастерской, которая при наличии достаточного количества сырья и времени будет изготавливать копии любой машины". Образ фантомного робота Неймана не раз встречается на страницах специальной литературы по робототехнике.

Уже с первых работ Дж. фон Неймана теория и практика электронных вычислительных машин начинают развиваться поразительными темпами, а изобретение транзистора в лабораториях компании "Bell Telephone" Джоном Бардином, Уолтером Бриттеном и Вильямом Шокли придает новый импульс этому динамическому процессу, позволившему в дальнейшем создать компактные и надежные компьютерные системы управления роботами.

Третий этап становления робототехники отмечен возникновением и всеобщим признанием термина "робот", разработкой и использованием для нужд человека прямых предшественников современных роботов - дистанционных копирующих манипуляторов и программируемых автоматических устройств манипуляционного типа, а также стремительным развитием научных и прикладных основ вычислительной техники и кибернетики. Этот мощный научно-технический задел, следуя интересам и потребностям общественного развития, вывел на старт современную робототехнику.

Четвертый этап. Возникновение современных роботов следует отнести к 1959 г., когда в США были созданы первые промышленные манипуляторы с программным управлением, получившие общепринятое название промышленных роботов (ПР) и положившие начало коммерческому производству. В 1950-х гг. группа американских инженеров, начав работу над проблемой применения теории управления в решении общих задач оптимального перемещения оборудования, инструмента и материалов в производственном процессе, установила, что управление погрузочно-разгрузочными и транспортными механизмами и процессами может быть поручено компьютеру. Относительная простота программирования управляющего компьютера становится основой для создания гибкого оборудования, пригодного для эффективной работы в изменяющихся условиях производства. Такой подход и обусловил создание первых механических манипуляторов с программным управлением, т.е. промышленных роботов.

Первопроходцами здесь стали два талантливых американских инженера - Джордж К. Девол и Джозеф Ф. Энгельбергер. В 1954 г. Девол запатентовал в США способ перемещения предметов между различными производственными участками на основе управляющей В начале 1960-х гг. первые американские промышленные роботы с торговыми марками "Unimate" (рис. 1.2) и "Versatran", созданные соответственно фирмами "Unimation", "American Machine and Faundry" (AMF) и предназначенные для обслуживания технологических процессов - литья под давлением , ковки, механической обработки, точечной сварки, нанесения покрытий - поступили на промышленный рынок. Они представляли собой уже достаточно совершенные системы с обратной связью и контролируемой траекторией движения, имели числовое программное управление и память, как у ЭВМ. Уже в первых роботах "Unimate" и "Versatran" был реализован принцип программирования обучением. Человек-оператор с помощью ручки координат задавал последовательность точек, через которые должна была пройти"рука" за один рабочий цикл, а робот "запоминал" их координаты, после чего мог автоматически с большой точностью осуществлять перемещение от одной точки к другой в заданной последовательности.

Применение роботов в автомобильной и металлургической промышленности оказалось экономически выгодным: затраты на приобретение роботов "Unimate" или "Versatran" (25-35 тыс. дол. за изделие) окупались за 1,5 - 2,5 г. Как было сказано в одной из статей того времени, опубликованной в "Машинери мэгэзин", в американской металлообрабатывающей промышленности появился новый тип производственного рабочего, который не состоит в профсоюзе, не пьет кофе в обеденный перерыв, работает 24 ч. в сутки и не интересуется пособиями или пенсией. Он осваивает новую работу за несколько минут и всегда выполняет ее хорошо, никогда не жалуется на жару, пыль и запахи и не получает увечий. Это промышленный робот.

Первые коммерческие успехи применения промышленных роботов явились мощным импульсом для их дальнейшего совершенствования. В начале 1970-х гг. появляются роботы, управляемые компьютерами. Первый мини-компьютер, управляющий роботом, был выпущен в 1974 г. фирмой "Cincinnati Milacron", одной из ведущих фирм - изготовителей роботов в США. В конце 1971 г. американской фирмой "INTEL" был создан первый микропроцессор, а несколькими годами позже появляются роботы с микропроцессорным управлением, что обусловило существенное повышение их качества при одновременном снижении стоимости. Дело в том, что микропроцессоры и основанные на них микро ЭВМ. Чрезвычайно дешевы, имеют малые размеры и массу и относительно легко могут быть запрограммированы для выполнения самых различных функций. Именно микропроцессоры, эти "чудо-кристаллы XX в." позволили строить управляющие микрокомпьютеры, стоимость которых в десятки и сотни раз ниже стоимости традиционных универсальных ЭВМ. Например, если сравнить микрокомпьютеры с первой электронно-вычислительной машиной "ENIAC", то можно убедиться, что их надежность выше примерно в 1000 раз, количество потребляемой энергии меньше в миллион раз, производительность больше чем в 20 раз, а физические размеры блоков памяти составляют примерно 1/30000 долю от размеров блоков машины "ENIAC". Но, может быть, самое удивительное, что при этом компьютер в 10000 раз дешевле. Уже в середине 1980-х гг. в капиталистических странах использовалось примерно 34 млн. микропроцессоров, в том числе в США - 23, Японии - 9, странах Западной Европы - 2 млн. К этому времени стоимость типичного микропроцессора снизилась на Западе более чем в 1000 раз, а мощность и быстродействие возросли в 70 и 400 раз соответственно.

В последующие годы после создания и выхода на промышленный Рынок первых роботов во всем мире началось стремительное развитие Робототехники. Конкуренция, борьба за рынки сбыта определили резкое увеличение производства промышленных роботов в ведущих странах, сопровождаемое энергичным внедрением робототехники в различные отрасли промышленности. В ряде капиталистических стран организуются ассоциации или общества, курирующие исследования и разработки в области создания и использования промышленных роботов, в частности, в 1972 г. образована Японская ассоциация промышленной робототехники (JIRA), в 1974 - Институт робототехники США (RIA) и ассоциация роботов Великобритании (BRA), в 1975 - Итальянское общество робототехники (SIRI), в 1978 - Французская (AFRI), в 1980 -Шведская (SWIRA), в 1981 - Австралийская (ARA), в 1982 - Датская (DRA) и Сингапурская (SRA) ассоциации роботов.

Изменяется и сам принцип использования промышленных роботов - от единичного к комплексному. В ведущих робототехнических странах (Япония, США, ФРГ, СССР и др.) в конце 1960-х - начале 1970-х гг. разрабатываются и создаются гибкие производственные системы (ГПС), так называемые "безлюдные" производства, представляющие собой производства будущего. Научно-технические достижения робототехники позволили в 1960-1980-х гг. создать ряд сложных научных и специальных робототехнических комплексов для исследования космического пространства (станции типа "Луна", аппараты "Луноход" - СССР; станции типа "Маринер", "Сервойер", "Викинг" - США и др.), а также освоения подводных глубин (аппараты "TV", "Москито", "Долфин" - Япония; аппараты "KURV", "RCV" - США; "Манта", "ОСА" -СССР; "ROV", "RM" - Франция; "ARCS" - Канада и др.).

Робототехника как научная дисциплина, формируется совместными усилиями ученых и разработчиков техники в целостное научно-техническое направление, обогащается огромным опытом разработки и эксплуатации самых разнообразных роботов, робототехнических устройств и систем.

И рассмотренный четвертый исторический этап может быть назван в целом этапом современной робототехники. Он характеризуется разработкой и созданием уже достаточно совершенных роботов, управляемых в наиболее развитом виде от ЭВМ и имеющих прикладное назначение как в промышленном производстве, так и в научных исследованиях; динамичным развитием и широким использованием в производственных процессах класса промышленных роботов; окончательным формированием робототехники в единое научно-техническое направление.

Состав и структура робота

Робот, активно взаимодействующий с окружающей средой, в общем виде должен содержать следующие системы: управляющую, информационно-измерительную (сенсорную), систему связи, исполнительную (моторную).

Управляющая, или интеллектуальная система - это "мозг" робота, который служит для выработки законов управления механизмами исполнительной системы на основе заложенной программы с учетом сигналов обратной связи от сенсорной системы. Важной функцией этой системы является распознавание ситуаций и моделирование среды функционирования робота, планирование действий и принятие целенаправленных решений, программирование и оптимизация движений, а также организация общения робота с человеком и взаимодействующими устройствами на том или ином языке. Управляющие системы роботов реализуются на базе пневматических или электрических логических элементов, аналоговых и цифровых систем, а в наиболее совершенном варианте - на основе ЭВМ или микропроцессоров, содержащих широкий набор входных (аналого-цифровых) и выходных (цифро-аналоговых) преобразователей и интерфейсных каналов связи, число которых может колебаться от нескольких десятков до нескольких тысяч. По этим каналам, как по нервным волокнам, передаются непрерывные (аналоговые) и дискретные (цифровые) сигналы. Интеллектуальные и адаптивные возможности робота определяются главным образом алгоритмическим и программным обеспечением управляющей системы.

Информационно-измерительная, или сенсорная система - это искусственные органы чувств робота, предназначенные для восприятия и преобразования информации о состоянии внешней среды и самого робота. В качестве элементов сенсорной системы используются телевизионные и оптико-электронные устройства, лазерные и ультразвуковые дальномеры, акустические датчики и гидролокаторы, тактильные, контактные и индукционные датчики, а также датчики положения, скорости, сил и моментов, потенциометры, тахометры, акселерометры и т. п.

Система связи - это "язык" робота, который служит для передачи сигналов информации между системами робота, а также для организации обмена информацией между роботом и человеком или другими роботами и устройствами с целью осуществления диалога, формулирования заданий роботу, контроля за функционированием его систем, диагностики неисправностей, регламентной проверки и т.п.

Информация от человека поступает обычно через устройство ввода или пульт управления путем физического воздействия (нажатие кнопки или клавиши, ключа телеграфного аппарата и т.п.). В последнее время все шире начинает применяться речевое общение, а также ввод информации с помощью биопотенциалов (биоуправление). Информация от робота к человеку поступает, как правило, в форме световых и звуковых сигналов, а носителями этой информации являются разного рода табло, - цифровые индикаторы, дисплеи, телекамеры и т.п. Результаты лабораторных исследований дают основания полагать, что в ближайшем будущем станет возможным речевое общение с роботом на естественном человеческом языке.

Совокупность управляющей, информационно-измерительной и системы связи образует информационно-управляющую систему робота, обеспечивающую обработку и передачу информации, и непосредственное управление приводами и механизмами исполнительной системы с целью организации активного взаимодействия робота с окружающей средой и выполнения задач, сформулированных человеком.

Исполнительная, или моторная система - это устройства, предназначенные для непосредственного воздействия на объекты окружающей среды или взаимодействия с ними в соответствии с управляющими сигналами, формулируемыми информационно-измерительной системой или непосредственно оператором. В качестве элементов моторной системы используются приводы (двигатели), передаточные устройства (передачи), связанные с ними механические руки (манипуляторы), механические ноги (педикуляторы), различные технологические инструменты, графопостроители, тележки с колесным, гусеничным и иными шасси и др.

Поколения роботов

Несмотря на то, что история создания и развития современных роботов насчитывает немногим более четверти века, они претерпели значительную эволюцию, как в смысле элементной базы, так и в смысле изменения их структуры, появления новых возможностей и функций, расширения областей применения, характера использования. Поэтому сложилась традиция делить историю развития и уровень совершенства роботов на поколения. Следует оговориться, что деление это весьма условно и понимать его следует в специфическом смысле. Так, некоторые специалисты полагают более правильным слово "поколение" заменить термином "вид". Однако не будем нарушать сложившиеся в технике традиции. Каждому поколению роботов присущи как определенные характерные показатели, так и определенные сферы применения. Каждое последующее поколение роботов обладает большими возможностями и совершенством, но не исключает предыдущего; они взаимно дополняют друг друга и находят применение соответственно своим функциональным возможностям и условиям экономической целесообразности. К настоящему времени сформировалось три поколения роботов.

Роботы первого поколения

Роботы первого поколения - это роботы с программным управлением (ПР - программные роботы), предназначенные для выполнения определенной, жестоко запрограммированной последовательности операций, диктуемой соответствующим технологическим процессом. Управление такими роботами осуществляется по заранее заданной программе, а значит, при строго определенных и неизменяемых условиях эксплуатации. Простота формирования и изменения программы, т.е. возможность переобучения, сделала таких роботов достаточно универсальными и гибко перестраиваемыми.

Однако функциональные возможности роботов первого поколения существенно ограничены малыми возможностями информационно-измерительной и недостаточным совершенством управляющей систем, в результате чего способность к восприятию внешнего мира и формированию его модели у программных роботов практически отсутствует. Такие роботы не могут функционировать самостоятельно: любое отклонение от заранее определенных и заданных программой условий ведет к сбою и остановке, а в наиболее тяжелых случаях - к аварии и выходу робота из строя. В последние годы в этой группе стали выделять более развитой вариант, называемый полтора поколения, оснащенный некоторым набором элементов очувствления.

К роботам первого поколения относится подавляющее большинство современных эксплуатируемых промышленных роботов, с помощью которых осуществляется установка, снятие, транспортировка изделий, механическая и термическая обработка, простейшие сборочные операции, сварка, штамповка, прессование, ковка, литье под давлением, окраска и отделка и т.п. Они хорошо справляются с обслуживанием металлорежущего оборудования (в частности,- станков с ЧПУ и обрабатывающих центров), печей, прессов, технологических линий, литейных машин и др., однако затрудняются выполнять более сложные производственные операции (например, сборочные, монтажные), не поддающиеся жесткой регламентации процесса, так как роботы первого поколения принципиально не могут функционировать автономно в недетерминированной обстановке.

Успешное функционирование роботов с программным управлением возможно лишь при четко определенных условиях, создание которых требует введения специального технологического оборудования, стоимость которого часто превышает стоимость самого робота. Это усложняет и удорожает роботизацию производства и иных сфер деятельности человека, делает ее менее гибкой, поэтому необходимы более совершенные роботы, обладающие значительно более развитым аппаратом очувствления, большей информационной мощностью, способностью к адаптации и самообучению, т.е. роботы второго поколения.

Роботы второго поколения

Роботы второго поколения - это очувствленные роботы (ОР), предназначенные для работы с неориентированными объектами произвольной формы, осуществления сборочных и монтажных операций, сбора информации о внешней среде. Они отличаются, во-первых, существенно большим набором и совершенством как внешних сенсорных датчиков (телевизионные, оптические, тактильные, локационные и т.п.), так и внутренних (датчики положений "руки" или "ноги" относительно "тела" робота, датчики усилий и моментов и т.п.) и, во-вторых, более сложной системой управления, требующей для своей реализации управляющей ЭВМ. Неотъемлемой частью роботов второго поколения является их алгоритмичное и программное обеспечение, предназначенное для обработки сенсорной информации и выработки управляющих воздействий.

Технические органы чувств , входящие в информационно-измерительную систему роботов второго поколения, служат источником обратных связей для управляющей системы; последняя, обрабатывая полученную информацию, формирует закон управления исполнительными механизмами с учетом фактической обстановки. Таким образом, очувствленные роботы при соответствующем аппаратном, алгоритмическом и программном обеспечении способны распознавать "ситуации" и автоматически приспосабливаться (адаптироваться) к заранее не определенным и изменяющимся условиям эксплуатации, т.е. становиться адаптивными роботами, при этом их функциональные возможности могут быть существенно расширены путем наращивания программ обработки сенсорной информации и адаптивного управления.

Возможности роботов второго поколения, оснащенных значительным числом датчиков внешней и внутренней информации и мощной управляющей ЭВМ с развитым программным обеспечением, значительно превосходят возможности роботов первого поколения. Благодаря способности "распознавать" внешнюю обстановку, анализировать сенсорную информацию и приспосабливаться к изменяющимся условиям эксплуатации, очувствленные роботы могут взаимодействовать с неориентированными объектами в неупорядоченной обстановке, а значит, выполнять исследовательские работы, сборочные и монтажные операции, собирать информацию об окружающей обстановке и т.п.

В настоящее время в лабораториях и научных центрах мира ведутся интенсивные исследования по разработке технического, программного и алгоритмического обеспечения перспективных моделей очувствленных роботов. Особое внимание при этом уделяется системам технического зрения, тактильному и силомоментному очувствлению роботов, а также микропроцессорной реализации алгоритмов обработки информации и управления.

Роботы третьего поколения

Роботы третьего поколения - это так называемые интеллектуальные (ИР), или разумные, роботы, предназначенные не только и не столько для воспроизведения физических и двигательных функций человека, сколько для автоматизации его интеллектуальной деятельности, т.е. для решения интеллектуальных задач. Они принципиально отличаются от роботов второго поколения сложностью функций и совершенством управляющей системы, включающей в себя элементы искусственного интеллекта.

Здесь уместно обратиться к понятию искусственного интеллекта. По определению известного ученого-кибернетика профессора А.В. Тимофеева, под интеллектом понимается способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. При этом под интеллектуальными понимаются задачи, связанные с отысканием алгоритма решения целого класса задач определенного типа. Деятельность же мозга, обладающего интеллектом, направленную на решение интеллектуальных задач, будем называть мышлением, или интеллектуальной деятельностью.

В процессе решения интеллектуальных задач проявляются такие характерные особенности интеллекта, как способность к анализу и обобщению, обучению и накоплению опыта (знаний и навыков), адаптации к изменяющимся условиям в процессе интеллектуальной деятельности. Благодаря этим качествам интеллекта, "мозг" может решать разнообразные задачи, а также легко перестраиваться с одной задачи на другую, являясь универсальным средством решения широкого круга задач (в том числе неформализованных), для которых нет стандартных, заранее определенных методов решений.

В процессе интеллектуальной деятельности человек постоянно ищет пути и средства к достижению той или иной цели, пытается выработать план действий, или алгоритм, следуя которому можно достичь этой пока недоступной цели, и, благодаря обучению и опыту, использовать в дальнейшем выработанный алгоритм, распространив его для эффективного решения уже целого класса подобных задач. Именно способность к преодолению трудностей и препятствий, нахождению обходных путей последовательного приближения к цели методом проб и ошибок там, где нет прямого и однозначного пути, отличает интеллектуальную деятельность от неинтеллектуальной.

Возникает принципиальный вопрос: можно ли моделировать интеллектуальную деятельность, или, иными словами, создать искусственный интеллект? Современная наука утвердительно отвечает на этот вопрос. Несомненно, что вычислительные машины и роботы в принципе могут обладать основными чертами интеллекта. Более того, современные наиболее совершенные ЭВМ и роботы в совокупности с их алгоритмическим и программным обеспечением уже обладают, по крайней мере, частично, этими чертами. О подобных системах говорят, что они содержат элементы искусственного интеллекта. В самом общем виде искусственный интеллект - это совокупность машинных автоматических методов и средств целенаправленной переработки информации (знаний) в соответствии с приобретенным в процессе обучения и адаптации опытом при решении разнообразных интеллектуальных задач.

Искусственный интеллект робота можно трактовать как алгоритмическое и программное обеспечение его информационно-управляющей системы, обладающее способностью моделировать (отображать) окружающую среду и решать широкий класс интеллектуальных задач посредством обучения на собственном опыте и адаптации к изменяющимся условиям функционирования. В общем виде интеллектуальный робот способен понимать естественный язык и вести диалог с человеком, создавать в себе модель внешней среды, распознавать и анализировать образы и ситуации, формировать понятия, планировать поведение, на основании чего строить программные движения исполнительной системы и осуществлять их отработку в условиях неполной информированности.

Потребность в интеллектуальных роботах появилась лишь в последние годы. Если роботы второго поколения уже используются для ряда научно-технических разработок (например, для космических и глубоководных исследований) и их начинают применять в промышленности, то роботы третьего поколения пока еще в процессе разработки. Однако во всем мире ведутся интенсивные научные исследования по созданию и совершенствованию различных систем интеллектуальных роботов: распознавания объектов, образов и ситуаций; формирования модели внешней среды; выработки целесообразного поведения в условиях неопределенности; надежной отработки движений исполнительными органами; самообучения в процессе взаимодействия с внешней средой и т. д.

Попытки создания роботов, способных "видеть", оценивать и анализировать окружающую обстановку, соответственно планируя и осуществляя свои действия, т.е. обладающих признаками искусственного интеллекта, начаты еще в 1960-х гг. Одним из первых успехов на этом пути было создание в 1960 г. экспериментального робота "Шейки" в Станфордском научно-исследовательском институте (США). Оснащенный органами технического зрения и управляемый оригинальной программой робот STRIPS (Stanford Research Institute Problem Solver - станфордский "решатель задач") продемонстрировал умение самостоятельно вырабатывать алгоритмы для выполнения задач перемещения в неорганизованном пространстве помещения, поиска заданных обьектов-блоков и их сталкивания с возвышенности с помощью клиновидного предмета. И хотя робот действовал очень медленно, длительно "обдумывая" свои действия, а выполняемые операции отличались примитивностью, даже такой уровень эксперимента потребовал применения сложнейшей компьютерной программы STRIPS и позволил убедиться в принципиальной возможности создания "мыслящей машины".

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]