Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачёт по физике Титков А3.docx
Скачиваний:
22
Добавлен:
18.11.2018
Размер:
36.83 Кб
Скачать

Звуковые волны

Звук представляет собой движение молекул воздуха вызываемое колеблющимся физическим телом (например, струной гитары, камертоном или мембраной громкоговорителя). Воздушная среда совершенно необходима для распределения звука в пространстве; её возвратно - поступательные движения во время колебаний сопровождаются последовательными волнами сжатия и разрежения воздуха, которые распространяются в вакууме, в котором, стало быть всегда царит абсолютная тишина. Если нет отражателя или резонатора, звук распространяется главным образом в направлении колебаний физического тела.

Амплитуда звуковой волны определяет интенсивность звука. Чем больше молекулы воздуха отклоняются от их среднего положения, тем больше амплитуда волны.

От частоты звуковой волны зависит высота слышимого звука, т.е. будет ли данный звук восприниматься как высокий (если число колебаний в секунду велико) или (в противном случае) как низкий.

Эти две характеристики воспринимаемых звуков взаимосвязаны. Фактически звуки всегда кажутся более интенсивными, чем низкие, даже если их волны имеют одинаковую амплитуду.

Мозг воспринимает только часть тех событий в акустической среде, которые достигают периферических рецепторных приборов внутреннего уха. Возможности восприятия определяются разрешающей способностью рецепторов по времени и частоте, скоростью передачи по нервным путям, направленностью внимания. «Звуки и свет, - писал И.М.Сеченов,- как ощущения суть продукты организации человека; но корни видимых нами форм и движений, равно как и слышимых нами модуляций звуков, лежат вне нас, в действительности» [39]. Человеческое ухо способно воспринять колебания в диапазоне 16-20000 Гц, но акустические колебания могут иметь как более низкие, так и более высокие частоты, которые составляют области не слышимых человеком ультра- и инфразвуков. Это не колебательные процессы во внешней среде, которые человек не замечает, но которые могут оказывать весьма существенное влияние на различные биологические процессы. Разнообразные шумы природного и технологического происхождения часто содержат как слышимые звуковые частоты, так и инфра- и ультразвуковые колебания: Вообще шумы являются постоянным фоном, сопровождающим действие и коммуникацию человека, тем компонентом среды, который оказывает огромное влияние на слух и работоспособность человека, но зачастую не замечаются или игнорируются им.

Звук

Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха.  Теперь немного поразмышляем. Если, например, в горах упал камень, а рядом не было никого, кто мог бы слышать звук его падения, существовал звук или нет? На вопрос можно ответить и положительно и отрицательно в равной степени, так как слово «звук» имеет двоякое значение. Поэтому нужно условиться, что же считать звуком – физическое явление в виде распространения звуковых колебаний в воздухе или ощущения слушателя. Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное.  В первом случае звук действительно представляет собой поток энергии, текущей подобно речному потоку. Такой звук может изменить среду, через которую он проходит, и сам изменяется ею. Во втором случае под звуком мы понимаем те ощущения, которые возникают у слушателя при воздействии звуковой волны через слуховой аппарат на мозг. Слыша звук, человек может испытывать различные чувства. Самые разнообразные эмоции вызывает у нас тот сложный комплекс звуков, который мы называем музыкой. Звуки составляют основу речи, которая служит главным средством общения в человеческом обществе. И, наконец, существует такая форма звука, как шум. Анализ звука с позиций субъективного восприятия более сложен, чем при объективной оценке.  Распространение звука в пространстве и его воздействие на органы слуха человека.  При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Любое движущееся тело, в том числе и колеблющееся, способно совершать работу, то есть оно обладает энергией. Следовательно, распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является колеблющееся тело, которое и излучает в окружающее пространство(вещество) энергию.  Органы слуха человека способны воспринимать колебания с частотой от 15-20 герц до 16-20 тысяч герц. Механические колебания с указанными частотами называются звуковыми или акустическими(акустика – учение о звуке)  Итак, звук – это волновой колебательный процесс, происходящий в упругой среде и вызывающий слуховое ощущение. Однако восприимчивость человека к звукам избирательна, поэтому мы говорим о слышимых и неслышимых звуках. Совокупность тех и других в общем напоминает спектр солнечных лучей, в котором есть видимая область – от красного до фиолетового цвета и две невидимые – инфракрасная и ультрафиолетовая. По аналогии с солнечным спектром звуки, которые не воспринимаются человеческим ухом, называются инфразвуками, ультразвуками и гиперзвуками.

Что же такое звук? Звук - это распространяющиеся в упругих средах: газах, жидкостях и твердых телах- механические колебания, воспринимаемые органами слуха.

Рассмотрим примеры, поясняющие физическую сущность звука. Струна музыкального инструмента передает свои колебания окружающим частицам воздуха. Эти колебания будут распространятся все дальше и дальше, а достигнув уха, вызовут колебания барабанной перепонки. Мы услышим звук. Таким образом, то, что мы называем звуком, представляет собой быструю смену, частицы воздуха не перемещаются, они только колеблются, попеременно смещаясь в одну и другую сторону на очень небольшие расстояния.

Но изолированных колебании одного тела не существует. В каждой среде в результате взаимодействия между частицами колебания передаются все новым и новым частицам, т.е. в среде распространяются звуковые волны.

Другим простым примером колебательного движения могут служить колебания маятника. Если маятник отклонить от его положения равновесия, а затем отпустить то он будет совершать свободные колебания. Под действием силы тяжести маятник возвращается в свое первоначальное положение, по инерции проходит исходную точку и поднимается вверх, при этом сила тяжести будет тормозить его движение. В точке максимального отклонения маятник становится и через мгновение начнет движение в обратном направлении. Циклы колебаний маятника непрерывно повторяются.

Колебания могут быть периодическими, когда изменения повторяются через равный промежуток времени и не периодическими когда нет полного повторения процесса изменения. Среди периодических колебаний очень важную роль играют гармонические колебания. В зависимости от процесса различают колебания механические, электрического тока и напряжения звуковых колебаний.

Наиболее наглядны волны на поверхности воды. Если бросить камень в воду, вначале появится углубление, затем - возвышение воды, а потом возникают волны, представляющие собой последовательно чередующиеся гребни и впадины. Увеличиваясь по фронту, они распространяются по всем направлениям, но отдельные частицы не передвигаются вместе с волнами, а колеблются только в небольших пределах около некоторого неизменного положения. В этом можно убедиться, например, наблюдая за щепкой, подпрыгивающую на волнах. Она будет подниматься и опускаться, т.е. колебаться, пропуская под собой бегущую волну.

Волны бывают продольные и поперечные; в первом случае колебания частиц среды совершаются вдоль направления распространения волны, во втором - поперек него.

Характеристики волны

Присущая волне синусоидальная форма определяется гребнями и впадинами, которые следуют друг за другом как отклонения от базисной прямой, представляющей среднюю (равновесную) величину.  Гребень и следующая за ним впадина составляют цикл, исходя, из которого можно провести различные изменения и определить характеристики данной волны. Время, необходимое для совершения цикла, называется периодом.  Волна описывается двумя основными характеристиками. Первая из них, амплитуда, отражает мощность или интенсивность колебания. Вторая, частота, даёт представление о том, что происходит колебание во времени.  Амплитуда волны соответствует расстоянию между базисной прямой и вершиной гребня. Это расстояние тем больше, чем интенсивнее (мощнее) волновой сигнал.  Частоту чаще всего оценивают по числу циклов, совершаемых за одну секунду, и выражают в герцах (1Гц = 1 цикл в секунду). Частота определяет высоту звука.

Ультразвук

Ультразвук, или «неслышимый звук», представляет собой колебательный процесс, осуществляющийся в определенной среде, причем частота колебаний его выше верхней границы частот, воспринимаемых при их передаче по воздуху ухом человека. Физическая сущность ультразвука, таким образом, не отличается от физической сущности звука. Выделение его в самостоятельное понятие связано исключительно с его субъективным восприятием ухом человека. Ультразвук, наряду со звуком, является обязательным компонентом естественной звуковой среды.

Ультразвук – упругие волны с частотами приблизительно от (1,5 – 2)·104Гц (15 – 20 кГц) до 109 Гц(1ГГц); область частотных волн от 109 до 1012 – 1013 Гц принято называть гиперзвуком. По частоте ультразвук удобно подразделять на 3 диапазона: ультразвук низких частот(1,5·104 – 105Гц), ультразвук средних частот(105 – 107Гц), область высоких частот ультразвука(107 – 109Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.  По физической природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн, имеет место ряд особенностей распространения ультразвука.  Ввиду малой длины волны ультразвука, характер его определяется прежде всего молекулярной структурой среды. Ультразвук в газе, и в частности в воздухе, распространяется с большим затуханием. Жидкости и твёрдые тела представляют собой, как правило, хорошие проводники ультразвука, - затухание в них значительно меньше. Поэтому области использования ультразвука средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и в газах применяют ультразвук только низких частот.  Ультразвуковым волнам было найдено больше всего применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см2.  Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).