Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
A_LINDYe_HAOTIChYeSKAYa_INFLYaTsIYa.doc
Скачиваний:
10
Добавлен:
06.11.2018
Размер:
583.68 Кб
Скачать

Квантовые флуктуации на инфляционной стадии

В соответствии с квантовой теорией поля, пустое пространство не вполне пусто. Оно наполнено квантовыми флуктуациями всех видов физических полей. Длины волн всех квантовых флуктуаций скалярного поля в ходе инфляции растут экспоненциально. Как только длина волны какой-либо флуктуации становится большей, чем , она прекращает осциллировать и ее амплитуда замораживается на некой ненулевой величине из-за большого вязкого члена в уравнении движения скалярного поля. Амплитуда этой флуктуации в дальнейшем остается практически неизменной, тогда как ее длина волны экспоненциально растет. Таким образом, проявления такой "замороженной" флуктуации равносильны проявлениям классического поля , рожденного квантовыми флуктуациями.

Так как в вакууме содержатся флуктуации всех длин волн, инфляция ведет к непрерывному рождению новых возмущений классического поля с длинами волн, большими . Средняя амплитуда возмущений, рожденных за интервал времени (за это время вселенная расширяется в раз) дается выражением (Vilenkin and Ford, 1982; Linde, 1982c).

Эти квантовые флуктуации ответственны за формирование галактик(Mukhanov and Chibisov, 1981; Hawking, 1982; Starobinsky, 1982; Guth and Pi, 1982; Bardeen et al, 1983). Однако если в ходе инфляции постоянная Хаббла достаточно велика, квантовые флуктуации скалярных полей могут приводить не только к формированию галактик, но также и к разделению вселенной на экспоненциально большие области с различными свойствами.

Для примера вновь рассмотрим простейшую суперсимметричную теорию, объединяющую слабое, сильное и электромагнитное взаимодействия. Различные минимумы эффективного потенциала в данной модели разделены расстоянием . Амплитуды квантовых флуктуаций полей , и в начале инфляционной стадии могут достигать . Это значит, что на начальных стадиях инфляции скалярные поля и могут свободно перепрыгивать из одного минимума потенциала в другой. Потому, даже если они изначально находились в одном и том же минимуме по всей вселенной, по окончании стадии хаотической инфляции вселенная окажется разделена на множество экспоненциально больших областей, соответствующих всем возможным минимумам эффективного потенциала.(Linde, 1983c, 1984b).

Вечная хаотическая инфляция

Процесс разделения вселенной на различные части еще более упрощается, если принять во внимание эффект самовоспроизводства инфляционных областей. Основной механизм можно представить себе следующим образом. Если квантовые флуктуации достаточно велики, они могут локально увеличить потенциальную энергию скалярного поля в некоторой части вселенной. Вероятность квантовых переходов, ведущих локальному к увеличению плотности потенциальной энергии может быть очень малой, но область, где они произошли начинает расширяться значительно быстрее остальных, и квантовые флуктуации в ней приводят к рождению новых инфляционных областей, которые будут расширяться еще быстрее. Это поразительное поведение ведет к эффекту самовоспроизводства вселенной.

Этот процесс возможен новом инфляционном сценарии (Steinhardt, 1982; Linde, 1982a; Vilenkin, 1983). Однако, хотя возможность использования его для доказательства антропного принципа была отмечена в работе (Linde, 1982a), он не привлек существенного внимания, так как амплитуда флуктуаций в новой инфляции обычно меньше . Этого недостаточно для проверки большинства квантовых состояний теории. В результате существование самовоспроизводящегося режима в новой инфляционной модели было практически забыто; долгое время этот эффект не исследовался и не использовался даже теми, что его открыл.

Ситуация существенно изменилась, когда было обнаружено, что самовоспроизводство вселенной имеет место не только в новой инфляции, но и в модели хаотической инфляции (Linde, 1986a). Чтобы понять этот эффект, рассмотрим инфляционную область начального размера , содержащую достаточно однородное поле с начальной величиной . Вышеприведенные уравнения показывают, что за характерное время поле в области уменьшится на . Сравнивая данное выражение с амплитудой квантовых флуктуаций , легко видеть, что при имеем , то есть движение поля за счет его квантовых флуктуаций гораздо быстрее классического.

За характерное время размер области с начальными размером и полем возрастает в , а ее объем - в раз, и почти в половине этого объема поле возрастает вместо того, чтобы уменьшаться. Таким образом, объем инфляционной области с полем возрастает примерно в 10 раз. Затем процесс повторяется, и вселенная входит в вечную стадию самовоспроизводства. Я называю этот процесс вечной инфляцией.

В данном сценарии скалярное поле может колебаться бесконечно долго с плотностью приближающейся к планковской. Это возбуждает квантовые флуктуации всех других скалярных полей, которые могут прыгать из одного минимума потенциальной энергии в другой. Амплитуда этих флуктуаций может быть очень большой, . В результате квантовые флуктуации, генерируемые в ходе вечной инфляции, могут проникать сквозь любые барьеры, даже барьеры с высотой порядка планковской, и вселенная после инфляции оказывается разделенной на бесконечно большое число экспоненциально больших областей, содержащих вещество во всех возможных состояниях, соответствующих всем возможным механизмам спонтанного нарушения симметрии, то есть различным законам физики при малых энергиях (Linde, 1986a; Linde et al, 1994).

Широкий спектр возможностей может открыть инфляция в теориях Калуцы-Клейна или суперструн, в которых присутствует практически бесконечное число вакуумных состояний и вариантов компактификации исходного 10- или 11-мерного пространства. Тип компактификации определяет константы связи, энергию вакуума, нарушения симметрии и, наконец, эффективную размерность пространства, в котором мы живем. Как было показано в работе (Linde and Zelnikov, 1988), хаотическая инфляция при почти планковской плотности может приводить к локальному изменению числа компактифицированных измерений; вселенная оказывается разделенной на экспоненциально большие области различной размерности.

Иногда спектр различных возможностей непрерывен. Например, в рамках теории Бранса- Дикке эффективная гравитационная постоянная зависит от величины поля Бранса-Дикке, которое также флюктуирует в процессе инфляции. В результате вселенная после инфляции оказывается разделенной на экспоненциально большие части со всеми возможными значениями гравитационной постоянной и амплитуды флуктуаций плотности (Linde, 1990b; Garcia-Bellido et al 1994). Инфляция может разделять вселенную на экспоненциально большие области с непрерывно меняющимся отношением чисел барионов и фотонов (Linde, 1985), и, соответственно, с галактиками, имеющими существенно различные свойства (Linde, 1987b). Инфляция может также непрерывно менять эффективное значение энергии вакуума (космологической постоянной ), что является необходимой предпосылкой для многих попыток найти антропное решение проблемы космологической постоянной (Linde, 1984b,1986b; Weinberg, 1987; Efstathiou, 1995; Vilenkin, 1995b; Martel et al, 1998; Garriga and Vilenkin, 2000,2001b,2002; Bludman and Roos, 2002; Kallosh and Linde, 2002). В таких условиях самые разнообразные наборы параметров физики частиц (масс, констант связи, энергии вакуума и т.д.) могли возникнуть по окончании инфляционной стадии.

Чтобы продемонстрировать возможные следствия таких теорий в контексте инфляционной космологии, рассмотрим результаты компьютерного моделирования эволюции системы двух скалярных полей в процессе хаотической инфляции (Linde et al, 1994). Пусть - инфлатон, то есть поле, вызывающее инфляцию; величина его показана высотой поверхности на двумерном срезе вселенной. Поле определяет тип возможного в теории спонтанного нарушения симметрии. Раскрасим поверхность черным, если поле в данной точке находится в состоянии, соответствующем одному из двух минимумов эффективного потенциала и белым, - если второму, что соответствует различным типам нарушения симметрии и, соответственно, различным наборам законов физики при низких энергиях.

В начале вся инфляционная область является черной, и распределения обоих полей очень однородны. Потом область расширяется до экспоненциально больших масштабов и оказывается разделенной на экспоненциально большие домены с разными свойствами (см. рис. 2). Каждый пик на картинке соответствует практически планковской плотности и может рассматриваться как начало нового Большого Взрыва. Законы физики там меняются очень быстро., однако они неизменны в тех частях вселенной, где поле мало - то есть в "долинах" рисунка 2. Квантовые флуктуации скалярных полей делят вселенную на экспоненциально большие области с различными законами физики при малых температурах и различными плотностями энергии.

Типичное распределение скалярных полей и в процессе самовоспроизведения вселенной. Высота распределения отражает величину поля , которое вызывает инфляцию. Поверхность раскрашена черным, если поле в данной точке находится в состоянии, соответствующем одному из двух минимумов эффективного потенциала и белым, - если второму. Законы физики при малых энергиях различны в областях разного цвета. Вершины "гор" соответствуют точкам, в которых квантовые флуктуации возвращают скалярные поля к планковской плотности. В некотором смысле каждую такую точку можно считать началом нового Большого Взрыва.

В результате квантовых скачков скалярных полей вселенная оказывается разделенной на бесконечное множество экспоненциально больших областей с различными законами физики при малых энергиях. Каждая из этих областей настолько велика, что практически может рассматриваться как отдельная вселенная: существа, ее населяющие, будут жить экспоненциально далеко от ее границ, и потому никогда ничего не узнают о существовании других "вселенных" с другими свойствами.

Если этот сценарий справедлив, физика сама по себе не способна дать полное объяснение всем свойствам нашей части вселенной. Одна и та же физическая теория может описывать различные области вселенной с совершенно разными свойствами. В соответствии с этим сценарием мы живем в четырехмерной области вселенной с нашими физическими законами не потому, что области другой размерности или с другими законами невозможны или маловероятны, а просто потому, что жизнь типа нашей в них невозможна.

Отсюда следует простое доказательство слабого антропного принципа, не подверженное обычным против него возражениям. Более не требуется некая сверхприродная причина, создающая нашу вселенную со специально подобранными для возможности нашего существования параметрами. Инфляционная вселенная сама по себе, без всякого внешнего вмешательства, рождает экспоненциально большие области со всеми возможными законами физики. И мы не должны более поражаться тому, что пригодные для нашего существования условия реализуются на таких больших масштабах - если даже они изначально установились только в нашей окрестности, инфляция устанавливает их во всей наблюдаемой части вселенной.

Новые возможности, появляющиеся в результате открытия самовоспроизведения вселенной, могут открыть дорогу тому, что я называю дарвиновским подходом к космологии (Linde, 1987a; Vilenkin, 1995; Garcia-Bellido and Linde, 1995). Мутации законов физики могут приводить к формированию областей, скорость расширения которых выше; эти области займут, следовательно, больший объем во вселенной и будут доступны большему числу наблюдателей.

С другой стороны, суммарный объем областей каждого типа растет бесконечно. Это скорее похоже на мирное сосуществование, а иногда даже на плодотворное сотрудничество - быстро растущие области рождают вокруг себя множество более медленных. В этом случае достигается стационарное состояние, и скорости роста полного объема областей каждого типа становятся примерно одинаковыми (Linde et al, 1994).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]