Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика.docx
Скачиваний:
15
Добавлен:
28.10.2018
Размер:
1.3 Mб
Скачать

Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.Функцию, имеющую конечную производную, называют дифференцируемой.  Процесс вычисления производной называется дифференцированием.

Основные правила дифференцирования:

  • Если функция константа, т.е. y = C, где C - число, то (С)=0 .

  • Если функции u и v дифференцируемы в точке x, то (v+u)=v+u.

  • Если функция Cu , где C - постоянная, дифференцируема в точке x, то (Сu)u .

  • Если функции u и v дифференцируемы в точке x, то (uv)=uv+uv.

  • Если функции u и v дифференцируемы в точке x и v(x)=0, то (vu)=v2uvuv.

Геометрический смысл производной

Ключевые слова: геометрический смысл производной

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Рассмотрим график функции y f ( x ):

Из рис.1 видно, что для любых двух точек A и B графика функции: xf(x0+x)−f(x0)=tg, где  - угол наклона секущейAB.  Таким образом, разностное отношение равно угловому коэффициенту секущей.  Если зафиксировать точку A и двигать по направлению к ней точку B, то x неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС.  Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует:

производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке.

В этом и состоит геометрический смысл производной.

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан:  координата  x  движущейся точки – известная функция  x ( t ) времени  t. В течение интервала времени от  t0  до  t0 +   точка перемещается на расстояние:  x ( t0 +  )  x ( t0 ) = , а её средняя скорость равна:  va =  . При    0  значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью  v ( t0 )  материальной точки в момент времени  t0 . Но по определению производной мы имеем:

отсюда,  v t0 ) = x’ t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит  механический смысл производной.Аналогично, ускорение – это производная скорости по времени:  a = v’ t ).

Правила дифференцирования общих функций

Таблица производных

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δydyили Δy»f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)f'(x0)·Δx.

Откуда

f(x) ≈ f(x0) + f'(x0)·Δx

Производные и дифференциалы высших порядков

Пусть производная некоторой функции f дифференцируема. Тогда производная от производной этой функции называется второй производнойфункции f и обозначается f". Таким образом,

f"(x) = (f'(x))'.

Если дифференцируема (n - 1)-я производная функции f, то ее n-й производной называется производная от (n - 1)-й производной функции f и обозначается f(n). Итак,

f(n)(x) = (f(n-1)(x))',   n ϵ N,   f(0)(x) = f(x).

Число n называется порядком производной.

Дифференциалом n-го порядка функции f называется дифференциал от дифференциала (n - 1)-го порядка этой же функции. Таким образом,

dnf(x) = d(dn-1f(x)),   d0f(x) = f(x),   n ϵ N.

Если x - независимая переменная, то

dx = const   и   d2x = d3x = ... = dnx = 0.

В этом случае справедлива формула

dnf(x) = f(n)(x)(dx)n.

     Формула Тейлора 

(Rn(x) - остаточный член формулы Тейлора).