Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Принципы построения систем топливопитания и автоматики авиационных ГТД

.doc
Скачиваний:
179
Добавлен:
29.03.2016
Размер:
1.36 Mб
Скачать

Принципы построения систем топливопитания и автоматики авиационных ГТД

Учебное пособие

УДК 62-50(075)

Приведены общие сведения о составе и работе систем топливоподачи авиационных газотурбинных двигателей. Описаны программы регулирования двухвальных ГТД.

Изложены сведения о системе автоматического управления двигателя НК-86.

  • принципиальная схема гидромеханической САУ;

  • электронной аналоговой САУ двигателя.

Дано описание конструктивной схемы САУ двигателя.

Учебное пособие предназначено для студентов специальностей

Содержание

Введение

  1. Агрегатный состав и работа топливной системы ГТД

  2. Программы регулирования ГТД

  3. Система автоматического управления двигателя НК-86

      1. Общие сведения о САУ двигателя

      2. Принципиальная схема гидромеханической САУ

      3. Электронная аналоговая САУ двигателя

  4. Конструктивная схема САУ двигателя

Системы топливопитания современных газотурбинных двигателей

Введение

Управление работой газотурбинного двигателя (ГТД) осуществляется изменением расхода топлива. При этом в отличии от двигателя наземного применения управление авиационного ГТД должно осуществляться с учетом режимов полета самолета, широкого изменения параметра окружающей среды (высоты и температуры воздуха), особенностей протекания рабочих процессов в двигателе и многих других факторов.

Поэтому система топливопитания современного авиационного ГТД включает в себя целый ряд автоматических устройств, помогающих экипажу самолета обеспечить эффективное и безопасное использование возможностей двигателя на различных этапах полета.

Агрегатный состав системы топливопитания ГТД

Топливная система двигателя состоит из трех основных частей:

- система кондиционирования топлива (I);

- система подачи топлива на запуске двигателя (II);

- система дозирования топлива на основных режимах работы двигателя (III).

Система кондиционирования топлива предназначена для придания топливу заданных физико-механических параметров. К числу этих параметров относятся:

  • температура;

  • степень очистки от механических загрязнений;

  • заданное давление и расход.

Топливо из самолетной системы поступает на вход в центробежный подкачивающий насос (1), приводимый во вращение от автоматического электродвигателя. Подкачивающий насос предназначен для преодоления топливом сопротивления агрегатов и подачи его к основному топливному насосу с избыточным давлением для безкавитационной его работы.

Подогреватели топлива (2), (3).

Несмотря на тщательную очистку топлива от присутствующей воды на пунктах ГСМ, полностью удалить воду из топлива не представляется возможным. Присутствие воды приводит к засорению (обмерзанию) топливных фильтров и выходу их из строя. Поэтому перед фильтром топливо необходимо подогревать до положительных температур. Топливо подогревают за счет отбора тепла из масляной системы двигателя (в топливо-масляном подогревателе (2)), а в случае недостаточного прогрева топлива за счет горячего воздуха из-за компрессора двигателя в топливо-воздушном подогревателе (3).

Подогретое топливо поступает к фильтру тонкой очистки топлива (4). Фильтр обеспечивает очистку топлива с тонкостью фильтрации 16 мкм. На случай засорения фильтр оснащен перепускным клапаном, который открывается при перепаде давления 0,075+0,01МПа. При этом в кабине экипажа появляется сигнал о засорении фильтра.

Основной топливный насос (5) обеспечивает подачу топлива с давлением до 10 МПа и расходом до 12000 кг/час. Мощность основного топливного насоса составляет несколько десятков киловатт. Поэтому топливный насос приводится во вращение от ротора ГТД через систему шестерен отбора мощности. В том случае, если в качестве насоса используется шестеренчатый насос нерегулируемой подачи, в конструкции насоса предусматривается предохранительный клапан (9).

Далее топливо поступает на вход системы подачи топлива на запуске двигателя и на основных рабочих режимах.

Система дозирования подачи топлива на запуске двигателя (II) состоит из следующих агрегатов:

  • дополнительного фильтра тонкой очистки топлива (6);

  • дозирующего устройства системы запуска (7) с гидромеханическим приводом;

  • перекрывного топливного крана (8);

  • топливных форсунок системы запуска (16).

Дозирование расхода поступающего на запуске топлива осуществляется путем изменения площади проходного сечения автомата запуска (7) по команде гидромеханического привода либо по местной временной программе, а на современных двигателях по внутридвигательным параметрам (частоте вращения ротора, скорости изменения частоты dn/dt, от степени сжатия воздуха в компрессоре Pk*/PH и других).

Изменение расхода топлива на рабочих режимах работы двигателя осуществляется основной топливной системой (III).

Топливо от насоса поступает к основному дозирующему устройству (11) с гидромеханическим приводом.

Поскольку основным устройством в системе топливопитания ГТД является дозирующее устройство с гидромеханическим приводом. Рассмотрим его работу более подробно.

Гидромеханический привод изменяет площадь проходного сечения топлива, являясь исполнительным механизмом агрегатов и узлов системы автоматического управления двигателем. Он связан (рис. 2) с:

  • регулятором работы вращения ротора и осуществляет выполнение команд экипажа по изменению режимов работы двигателя от малого газа до взлетного режима;

  • системой корректировки расхода топлива при приемистости и сброса газа с учетом высоты полета самолета;

  • системой корректировки расхода топлива при изменении давления и температуры воздуха на входе в двигатель (РН*, ТН*);

  • электронной системой управления двигателем (ЭСУД) для ограничения предельно допустимой частоты вращения ротора двигателя и температуры газов на входе в турбину;

  • ограничителем максимальной степени сжатия вентилятора.

Рис.2. Схема взаимодействия дозирующего устройства с агрегатами и узлами системы автоматического управления двигателя.

Дозирующее устройство работает за счет изменения площади проходного сечения. При этом расход топлива изменяется в соответствии со следующей зависимостью:

, (1)

где: μ- коэффициент расхода, определяемый геометрией проточной части дозирующего устройства;

FД.у – площадь проходного сечения;

Рнас – давление, развиваемое насосом;

Рф – давление топлива перед форсунками двигателя;

ρ – плотность топлива.

Формула (1) показывает, что расход топлива, поступающего к форсункам определяется площадью проходного сечения дозирующего устройства и перепадом давления (Рнасф). Этот перепад зависит от переменных величин давления за насосом и перед форсунками. Для того, чтобы исключить неоднозначность расхода топлива, в системе предусмотрено специальное устройство – клапан постоянного перепада давления топлива (10) на дозирующем устройстве. Этот клапан воспринимает давление топлива за насосом Рнас и давление на выходе дозирующего устройства (давление перед форсунками). При изменении разности этих давлений клапан (10) изменяет перепуск части топлива с выхода насоса на его вход. При этом, расход топлива через дозирующее устройство пропорционален площади проходного сечения, а если эта площадь не изменяется, то обеспечивает постоянное значение расхода топлива при любых отклонениях давлений Рнас и Рф. Тем самым обеспечивается точное дозирование расхода топлива на всех рабочих режимах работы двигателя.

Перекрывной (пожарный) кран (12) совместно с краном (8) обеспечивает выключение двигателя.

Расходомер (13) поступающего в ГТД топлива позволяет определить значение мгновенного расхода топлива, являющегося одним из важнейших диагностических параметров оценки технического состояния двигателя. Кроме того, с помощью расходомера определяется суммарное количество топлива, поступившего в двигатель за время полета и определяется остаток топлива на борту летательного аппарата. В качестве расходомеров используются турбинные датчики расхода.

Распределитель топлива по контурам рабочих форсунок (15) является двухканальным трехпозиционным распределителем. Необходимость такого агрегата в топливной системе объясняется следующим. Расход топлива при изменении режимов от малого газа до взлетного увеличивается в 10 раз и более. Такое изменение потребного расхода обеспечивается увеличением перепада давления на форсунках в соответствии с формулой:

, (2)

где: μ- коэффициент расхода, определяемый геометрией проточной части форсунок;

FФ – площадь проходного сечения форсунок;

Рф – давление топлива перед форсунками двигателя;

РКС – давление в камере сгорания двигателя;

ρ – плотность топлива.

Формула (2) показывает, что для десятикратного увеличения расхода топлива увеличивать не меньше чем в сотню раз. Для снижения давления топлива на выходе из насоса современные ГТД оснащают двумя контурами форсунок. При этом на малых режимах работы топливо поступает в двигатель через форсунки 1го контура, а затем через форсунки 1го и 2го контуров. Благодаря этому расход топлива в двигатель обеспечивается при значительно меньшем давлении. Графически работа распределителя топлива по контурам топливных форсунок иллюстрируется как на рис. 3.

Пунктирными линиями на рисунке представлены расходные характеристики 1го и 2го контуров форсунок, а сплошной линией – расход топлива, поступающий в двигатель по двум контурам одновременно.

Рис. 3 Работа распределителя топлива по контурам топливных форсунок

На малых режимах работы топливо поступает в двигатель через форсунки 1го контура. При достижении перепада давления (ΔРоткр) топлива начинает дополнительно поступать и через форсунки 2го контура и затем расход топлива в двигатель поступает одновременно через оба контура. При этом расход топлива равен (GT 1+2 K) сумме расходов по контурам (GT+ GT) и обеспечивается при значительно меньшем давлении топлива.